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Figure 1 The rendering of BEEPLE Zero-Day scene [1] using BRDFs described in this blog. Rendered with 2 million rays per 
pixel using the Falcor path tracer [2]. 

1 Introduction 
Creating photorealistic material models has been a topic of computer graphics research for 

decades. Many models have been created over the years – empirical, physically based and models 
based on data measured of physical surfaces. Early empirical models, such as Phong or Lambertian 
managed to provide plausible results, while being efficient to evaluate with limited computational 
resources. One of the keys to their longevity was their ability to reasonably reproduce a range of real-
world materials, while also providing intuitive parameters for tuning by artists (as opposed to using, 
e.g., the physical units).  

Advances in algorithms for efficient evaluation of light transport in the scene, such as path 
tracing, photon mapping, and other methods enabled us to evaluate complex materials based on 
multiple interactions of light with many surfaces in the scene (while implicitly rendering the effects 
such as caustics, indirect (global) illumination, soft shadows etc.). The light transport algorithm is 
responsible for establishing the paths that light travels in the scene, while the material model evaluates 
how light interacts with surfaces along the path.  Formal model for this approach is described by the 
famous rendering equation [3], where the contribution of material on the surface is given by the 
bidirectional reflectance distribution function (BRDF).  

In this article we look at implementation of some basic BRDFs commonly used in games and 
the theory behind them. A lot of existing BRDF code is highly optimized and uses many approximations 
and tricks, making it hard to understand and modify. To make it easier to study existing 
implementations, we provide code with explanations of inner workings and derivation of all discussed 
BRDFs. We will also discuss the usage of BRDFs for indirect lighting, e.g., in Monte Carlo path tracing, 



where importance sampling and ensuring energy conservation is needed. These are not usually 
implemented in game engines as they were not needed for rasterization but are necessary for 
applications making use of emerging real-time ray tracing. 

2 So, what is the BRDF? 
The BRDF describes reflectance of the surface for given combination of incoming and outgoing 

light direction. In other words, it determines how much light is reflected in given direction when certain 
amount of light is incident from another direction, depending on properties of the surface. For 
example, for diffuse surfaces, the BRDF specifies small amount of reflection in all directions, while for 
mirrors, all the light is reflected in one direction. This formulation is very flexible as it enables us to 
encapsulate the response of surface material into a BRDF implementation and setting of its 
parameters, which is independent of underlying algorithm for light transport. Note that BRDF does not 
distinguish between direct and indirect incoming light, meaning it can be used to calculate contribution 
of both virtual lights placed in the scene (local illumination), and indirect light reflected one or more 
times from other surfaces (global illumination). This also means that BRDF is independent of the 
implementation of lights which can be developed and authored separately (BRDF only needs to know 
direction of incident light and its intensity at shaded point). 

𝐿(𝑃, 𝜔௢) =  𝐿௘ + න 𝒇(𝑷, 𝝎𝒊, 𝝎𝒐)𝐿௜(𝑃, 𝜔௜)(𝜔௜ ∙ 𝑛ො௉)𝑑𝜔௜ 

𝛀

 

Figure 2 The rendering equation with BRDF highlighted in bold. 

Independence of the rendering algorithm and lighting means we can implement such abstract 
BRDFs as “material plugins”, accessed through the simple API, and the visual results produced by 
different renderers will be the same. This has led to the emergence of material libraries (e.g., the MDL 
[4] and universal material authoring tools (e.g., Substance Designer) favored by technical artists. 
Materials can also be studied and developed independently of the rendering algorithms. 

For this abstraction to work, and to make BRDF physically based (photorealistic), the BRDF 
should obey to the following principles: 

- Helmholtz reciprocity – the incoming and outgoing directions can be swapped (hence the 
name bidirectional), and the resulting reflectance will be the same. Note that some 
algorithms trace light rays originating from the camera (path tracing), other from the light 
sources (photon mapping) or both (bidirectional path tracing). Helmholtz reciprocity 
ensures consistent results for all types of algorithms. 

- Energy conservation – the energy reflected from the surface should be equal to the energy 
received (for the surface with perfectly white albedo without absorption). 

Early empirical models like Phong generally do not satisfy these requirements and therefore 
are not suitable for photorealistic rendering. They also cannot reproduce behavior of many materials 
correctly, e.g., rough surfaces or metals, as we will discuss later in more detail. This has driven the shift 
from empirical to physically based models even for real-time rendering once programmable and 
sufficiently powerful GPUs were available.  

It must be noted that some of the successful models do not satisfy these requirements. Disney 
model [5] is not energy conserving (but note that sequel to their article [6] discusses energy 
conservation for later projects) and Autodesk model [7] does not necessarily satisfy Helmholtz 
reciprocity. The Disney model was used in combination with unidirectional path tracing where lack of 
reciprocity did not introduce significant issues. Perfect energy conservation may not be a strict 



requirement either, because unless the BRDF reflects more energy than it receives it is unlikely to cause 
problems, except for the darkening of surfaces where energy is lost. In the end, high performance of 
BRDF implementation and ease of use by artists can be preferable to satisfying all theoretical 
requirements for BRDFs, especially when rendered content is fully under control. 

2.1 Construction of BRDF 
Most BRDFs used in games are composed of two BRDFs – diffuse and specular lobes. This 

decomposition comes from a fact that when light interacts with a surface, part of it is reflected away 
(contributing to specular BRDF), while the remaining part scatters into the surface. Inside of the 
material, more subsurface scattering occurs, and part of light eventually hits the surface again and 
exits the material (contributing to the diffuse BRDF) in randomized direction. Due to scattering inside 
of a surface, this light has been “filtered” and causes the object to appear with certain color. This also 
means that light can travel some distance under the surface, carrying the light away from the entry 
point, creating a “subsurface scattering” effect. A common simplification is to disregard this 
phenomenon and set the exit point to be equal to the entry point. We will not go into details of 
subsurface scattering in this article and recommend a recent blog post by Pettineo [8] which provides 
a nice summary on the topic. 

 

Figure 3 Decomposition into diffuse (left) and specular (right) lobes. BRDF values shown in blue, while the red part shows 
cosine weighted BRDF contribution (scattered energy / exiting radiance contribution). 

This decomposition into specular and diffuse reflections has been discussed in optics literature 
as early as 1924 by Pokrowski [9]. Note an important distinction between BRDF value (blue) and 
scattered energy (red) which is cosine weighted. Cosine term comes from rendering equation and will 
be discussed further in Section 3.1, but for the detailed explanation we recommend chapter about 
Materials in Graphics Codex [10]. 

How much light reflects away (or scatters into) the material is described by Fresnel equations. 
Light incident under grazing angles is more likely to be reflected, which creates an effect sometimes 
called the “Fresnel reflections” (see Figure 4). Fresnel term is also responsible for modeling distinction 
between metals and dielectrics. Metals have much higher absorption coefficient than dielectrics, 
meaning part of the light that would otherwise be reflected is absorbed. Because this absorption is 
dependent on wavelength, reflections of some metals (e.g., gold) are colored depending on how 
individual wavelengths are absorbed, while reflections of dielectrics generally take over an unchanged 
color of the light source. More details about Fresnel term will be discussed in Section 4.3. 



 

Figure 4 “Fresnel reflections” on still water surface. 

Also note that because light contributing to diffuse BRDF has crossed the material boundary 
twice, technically we should also apply the Fresnel term twice, but diffuse BRDFs are typically created 
to account for this. 

We have already mentioned that light travels some distance under the surface before exiting, 
creating a subsurface scattering effect. That assumed the travelled distance was relatively short, and 
the light exited via the same (or very similar) surface it had entered. However, for fully- or semi-
transparent materials, the light can pass through the object and exit on the other side. To complicate 
things further, scattering inside of the material and/or rough surface can cause the light to be diffused 
(transmitted in randomized directions, e.g., via the frosted glass, ice…). Both transmittance and 
subsurface scattering can be rendered using the “volumetric light transport” methods which simulate 
how light travels inside the volume. These methods are generally expensive, and its effects can be 
approximated using: 

 BTDF (Bidirectional Transmittance Distribution Function) – a function describing how 
the light is transmitted through the surface to the other side (on the object 
boundaries), introduced by Jos Stam [11]. 

 Participating media – a simple extinction of light due to travelling through the object. 
 Subsurface scattering algorithm – to calculate the approximate exit point for incident 

light. 

Note that BTDF only describes transmittance on surface boundaries, but not inside of the 
object. Light only interacts with material at points where it enters and exits the volume, as if the mesh 
was a hollow shell (actually, that’s how it’s mesh is modeled), while it ignores scattering that might 
happen inside of the media. In this case, light extinction which would occur has to be applied explicitly.  

So far, we have discussed BRDF and BTDF to describe reflection and transmission of light – but 
there is also an umbrella term “bidirectional scattering distribution function” (BSDF or BxDF) 
commonly seen in the literature meaning either BRDF, BTDF, BSSRDF (for subsurface scattering), etc.  

Finally, all our BSDFs (specular BRDF, diffuse BRDF and BTDF) must be combined in a 
meaningful way, greatest concern being the energy conservation, which we will discuss in Section 5.1. 

3 Implementing simple BRDFs 
In this section we describe well-known simple BRDFs – Lambertian, Phong, and few others. We 

will also define an interface which will enable us to implement more complex BRDFs as drop-in 
replacements. Before we start, let us define some commonly used vectors with the help of Figure 5. 



Vector 𝑁 is a shading normal for given surface (possibly coming from a normal map). Vector 
𝑉, the view vector, specifies a direction from shaded point towards the viewer (camera). More 
generally, it specifies outgoing light direction, and in a typical path tracer, this is the opposite of ray 
direction. Vector 𝐿 points toward a light source, or, depending on context, specifies a direction in which 
the incident ray reflects. Vector 𝐻, a half (half-way) vector lies half-way between 𝑉 and 𝐿. It is also 
equal to the microsurface normal of a microfacet model discussed in Section 4. Vector 𝑅 is a direction 
of perfect (mirror) reflection of vector −𝐿  along the normal 𝑁, and vector 𝑇 is a tangent perpendicular 
to 𝑁 on the triangle plane. All these vectors are normalized. Vectors 𝑣 and 𝑙 are projections of 𝑉 and 
𝐿 onto triangle plane. 

 

Figure 5 Vectors commonly used for BRDF evaluation. 

 

3.1 Lambertian diffuse BRDF 
 Lambertian is one of the simplest BRDF functions used for diffuse term which assumes that 
incident light is scattered in all possible directions equally (within the hemisphere around the surface 
normal), but it is still a good approximation for behavior of many real-world materials and is very fast 
to evaluate. Therefore, it can be a good choice, e.g., for secondary light bounces (in combination with 
suitable specular BRDF). It is also a default diffuse BRDF used in UE4 engine [12]. It is not view-
dependent, so it is friendly to algorithms involving temporal accumulation with reprojection 
(denoising, TAA, etc.). For a full derivation from first principles there is a nice article written by Saikia 
[13], here we will start with definition of Lambertian BRDF which is: 

𝑓௅௔௠௕௘௥௧௜௔௡(𝐿, 𝑉) =
𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒

𝜋
 

Evaluating this for light coming from a known direction 𝐿 (e.g., a virtual light source) and 
reflecting towards a viewer is straightforward: 

brdfLambertian = (diffuseReflectance / PI) * dot(N,L); 



By this we implement the function of our BRDF interface we will call eval. Note that we have 
moved the cosine term from rendering equation (Figure 2) to evaluation function. This is a common 
practice as in some cases, it can cancel out with another cosine term used in the BRDF. Such 
implementations are sometimes referred to as “BRDFs with cosine term built in” and care must be 
taken not to apply it again. Diffuse reflectance (often denoted with the symbol ρ) specifies how much 
of the incident light is reflected in the diffuse lobe and is typically calculated from a “base color” 
parameter which we will discuss in Section 4.3.1. A term albedo is sometimes also used, which can be 
ambiguous since albedo (defined as ratio of incident and reflected light) can be dependent on 
direction, although in practice it is typically specified for direction of normal incidence. 

Another common optimization is to move dividing by a constant π into preprocessing step, 
pre-dividing diffuse reflectance textures offline. However, all functions using diffuse reflectance (base 
color) must then be adjusted accordingly, some of which may not contain division by π.  Another option 
is to pre-divide light intensities, but for path tracing where light can come from multiple bounces, this 
is not applicable. To make things less confusing, we include division by π inside of BRDF in our code 
sample. Thorough discussion on this topic can be found in the article “to PI or not to PI” by Lagarde 
[14]. 

So far, we can calculate BRDF contribution for light coming from known direction using our 
eval function. For most light transport algorithms (e.g., the Monte Carlo path tracing), another function 
is needed to figure out in which direction should we trace the next ray. We will call this function 
sample.  It will take a random number as a parameter and return a new ray direction, along with a 
value of probability density function (PDF), which can be understood as a likelihood of choosing that 
particular direction over other possible directions. Looking at how PDF is used in Monte Carlo 
estimator: 

𝐹 =
𝑓(𝑥)

𝑝𝑑𝑓(𝑥)
 

and substituting 𝑓(𝐿, 𝑉) for our Lambertian BRDF function we get: 

𝐼 =
𝑓௅௔௠௕௘௥௧௜௔௡(𝐿, 𝑉)

𝑝𝑑𝑓(𝐿)
 

𝐼 =

𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
𝜋 (𝑁 ∙ 𝐿)

𝑝𝑑𝑓(𝐿)
 

We call the value 𝐼 a weight of the sample and we will introduce it in the next paragraph. The 
value of pdf depends on the sampling method, and its choice can be arbitrary, as long as its PDF is 
positive and nonzero whenever BRDF is nonzero. Looking at the last equation we can see that by clever 
choice of sampling function, its PDF could cancel out with some BRDF terms and simplify the 
calculation. Most basic sampling method, which is actually a great choice for Lambertian and other 

diffuse BRDFs is sampling in a cosine-weighted hemisphere, with PDF = 
(ே∙௅)

గ
. The code for this sample 

method can be found, e.g., in Sampling Transformations Zoo in Ray Tracing Gems [15], and is used in 
our code sample. These methods generally work by generating a random point in disk (by warping two 
random numbers which form a square to a disk), and projecting that point up onto the hemisphere 
(just by calculating the Z component). 

To see how PDF and BRDF terms cancel out we substitute our cosine-weighted PDF, and we 
get: 



𝐼 =

𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
𝜋 (𝑁 ∙ 𝐿)

(𝑁 ∙ 𝐿)
𝜋

 

𝐼 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 

Now we can see how moving cosine term from rendering equation into BRDF evaluation made 
it possible to cancel it out, along with 𝜋, so that only the reflectance remains in the final equation. This 
value is useful when Monte Carlo integration is used, e.g., in path tracing, and we will call it the weight 
of sample. When ray hits a surface and we sample a direction of the reflected ray according to BRDF, 
the amount of light that this ray can “carry” has to be adjusted by this weight, to account for material 
properties of the surface.  

This approach of constructing the sampling function with PDF closely matching the BRDF not 
only simplifies the code, but also reduces variance (noise) of Monte Carlo estimator and is therefore 
an important aspect of BRDF implementation. A good example of such method is the sampling with 
VNDF (distribution of visible normals) which will be discussed in Section 4.4. 

Using this, we have now created an optimized function we will call evalIndirect, which 
combines eval and sample into one function which returns the sampled direction and its weight. But 
notice that it also eliminates calculation of true PDF, which can still be useful for some algorithms, e.g., 
multiple importance sampling. To fix this, we introduce new method called pdf which simply returns 
PDF of sampling given direction. To verify whether our optimized evalIndirect returns results consistent 
with sample and pdf, we can always implement evalIndirect by calling eval and pdf explicitly and check 

if value ௘௩௔௟

௣ௗ௙
 is equal to the weight of the sample of optimized evalIndirect function. 

These 4 functions define our interface for any BRDF, so we can implement different material 
types easily by implementing these functions and reuse code for different light transport algorithms. 
To summarize: 

 eval evaluates the BRDF function for known incoming and outgoing directions 
 sample samples BRDF to return a new (outgoing) ray direction 
 pdf returns PDF of sampling given outgoing direction 
 evalIndirect combines these functions in an optimized version 

3.2 Phong Reflection Model 
Another popular reflection model commonly used with Lambertian in the past was introduced 

by Phong [16] to provide a computationally inexpensive specular highlight for real time rendering 
(which he defined as rendering with >30 FPS). Phong reflection model is not to be confused with Phong 
shading – a method for normal interpolation to achieve smooth specular highlights. While the original 
Phong’s paper states that his reflection model is physically based (derived by observation of real 
materials), it is not physically based by today’s standards as it lacks phenomena such as off-specular 
peak, Fresnel reflections and others. Its formula is simple, leading to a straightforward implementation 
(notice the (𝑁 ∙ 𝐿) was term added to the code the same way as for Lambertian): 

𝑓௉௛௢௡௚(𝐿, 𝑉) = 𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 (𝑅 ∙ 𝑉)௦௛௜௡௜௡௘௦  

brdfPhong = specular_reflectance * pow(dot(R, V), shininess) * dot(N, L); 

The width of the highlight is controlled by the exponent (often called shininess, or shine) which 
is an unbounded parameter, but it is common to limit its range to about 10000. To evaluate Phong 
model, we must calculate the vector 𝑅 (vector −𝐿 reflected along the normal), but as shown by Blinn 



in his optimized version [17], the half vector 𝐻 can be used instead. To implement sample function in 
our code we use a method found in Ray Tracing Gems [15]. 

Since it is neither energy conserving nor reciprocal, it is technically not correct to call it a 
“Phong BRDF” in this form, however, there have been attempts to fix these deficiencies and make it 
suitable for path tracing. Articles by Lafortune [18] and Lawrence [19] show such solutions, including 
importance sampling. Various normalization terms have been created to make Phong model energy 
conserving (see, for example, the article by Giesen [20]). Blinn introduced an optimized version [17] 
and combined Phong’s specular highlight with Lambertian diffuse and constant ambient terms, 
creating a Blinn-Phong reflection model which became a standard in real time applications until it was 
replaced by more advanced physically based models. Now mostly obsolete ambient term was intended 
to account for indirect illumination which has since been replaced by image-based lighting, real time 
ray tracing, or similar methods. 

One of the most comprehensive models based on Phong reflection was introduced by 
Ashikhmin and Shirley [21] and featured energy conserving reciprocal BRDF, anisotropic reflections, 
was coupled with a suitable diffuse BRDF and an importance sampling method. More recently, another 
model based on Phong was introduced by Gotanda [22] which was highly optimized for low 
computational cost. Gotanda also later introduced an improved layered version of his model [23].  

3.3 Oren-Nayar Diffuse Reflectance Model 
 More advanced reflectance model for diffuse reflection which accounts for surface roughness 
was introduced by Oren and Nayar [24]. They based their model on observation that rough surfaces 
reflect more light when view direction approaches incident light direction than Lambertian model 
predicts (an effect called backscattering, an example of such non-Lambertian surface is the moon). 
Oren-Nayar model accounts for this phenomenon by generalizing Lambertian model and making it 
sensitive to surface roughness and viewing direction. It was derived using the microfacet theory, just 
like the physically based specular reflectance model which will be discussed in following section.  

Note that when this model is coupled with a specular BRDF, it is possible that underlying 
microfacet model and distribution functions are different (Oren-Nayar uses V-cavity model with 
Gaussian distribution of slopes), and the roughness parameter may need to be converted from one to 
another or remapped to plausible range. Because roughness in Oren-Nayar model (denoted 𝜎) is 
defined as standard deviation of microfacet orientation angle, it is specified in angular units. Appendix 
B in Lagarde’s article on Frostbite [25] suggests a conversion between Beckmann roughness and Oren-
Nayar roughness as: 

𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠ை௥௘௡ே௔௬௔௥ =
ଵ

√ଶ
arctan (𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠஻௘௖௞௠௔௡௡) 

Oren and Nayar presented several versions of their model with various degrees of 
simplifications. Code accompanying this article uses their simplest “qualitative” model: 

𝑓ை௥௘௡ே௔௬௔௥(𝐿, 𝑉) =
𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒

𝜋
(𝑁 ∙ 𝐿)(𝐴 + 𝐵 max൫0, cos൫φ

௩
− 𝜑௟൯൯ 𝑠𝑖𝑛𝛼 𝑡𝑎𝑛𝛽) 

𝐴 = 1.0 − 0.5
𝜎ଶ

𝜎ଶ + 0.33
  ;   𝐵 = 0.45

𝜎ଶ

𝜎ଶ + 0.09
 ;   𝛼 = max(𝜃௟ , 𝜃௩) ;  𝛽 = min (𝜃௟, 𝜃௩) 

   
where 𝜃௟ (and 𝜃௩) are angles between normal and light (and view) vector but note that φ

௩
 and 𝜑௟  are 

azimuth angles between these vectors (angle between their projections onto plane defined by the 
normal). Our code sample calculates projection of these vectors onto normal plane to obtain correct 



angles, but optimized version which also eliminates use of some trigonometry functions (for the 
expense of square roots) can be found in Physically Based Rendering [26]. 

3.4 Disney (Burley) Diffuse Model 
Another popular and widely used model is the Disney diffuse [5], sometimes also called the 

Burley diffuse. It is an empirical model derived by observation of measured data which includes the 
phenomenon of grazing retroreflection dependent on roughness. In this regard, it is like the Oren-
Nayar model, but is simpler to evaluate. It is based on the Schlick’s Fresnel approximation formulas 
(see Section 4.3) and extends basic Lambertian model to either increase or decrease reflectance on 
grazing angles within specified bounds (0.5 to 2.5) depending on roughness: 

𝐹஽ଽ଴ = 0.5 + 2 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 𝑐𝑜𝑠ଶ𝜃ௗ 

𝑓஽௜௦௡௘௬(𝐿, 𝑉) =
𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐

𝜋
(1 + (𝐹஽ଽ଴ − 1)(1 − cos 𝜃௟)ହ)(1 + (𝐹஽ଽ଴ − 1)(1 − cos 𝜃௩)ହ)  

Because this model was not derived using the microfacet theory (unlike the Oren-Nayar 
model), the roughness parameter does not have the same meaning with regards to statistical 
distribution of microfacet normals and may not be compatible with roughness used for specular BRDF. 
Burley’s paper suggests a remapping of roughness to specular BRDF roughness (𝛼) as: 

𝛼 = 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠ଶ 

Furthermore, this model is not energy conserving, and it can be problematic to use in renderers 
where energy conservation is important (e.g., in path tracing). Lagarde describes a version of this 
model in his excellent article on rendering in Frostbite engine [25], which significantly improves energy 
conservation, and ensures that no more energy is reflected than is received when coupled with a GGX-
based specular BRDF. 

3.5 More diffuse BRDFs 

 

Figure 6 Subtle differences. Comparison of diffuse BRDFs on a rough object (roughness = 0.5). From left to right: Lambertian, 
Oren-Nayar, Disney diffuse, and Frostbite diffuse. 

Another diffuse BRDFs worth studying not covered in this article are, e.g., the ones by 
Hanrahan-Krueger [27] and Heitz-Dupuy [28]. An interesting research direction is to find diffuse models 
that combine well with widely used GGX-based microfacet BRDF with regards to energy conservation 
and plausible visual results, such as the one found in work by Gotanda [29]. 

4 Microfacet Model 
Many recent BRDFs are based on the microfacet theory, originally developed in the optics 

literature, and introduced to the graphics community in articles by Blinn [17] and Cook and Torrance 
[30]. The motivation for microfacet model was to better understand and model reflection of light from 
rough surfaces, which as shown by measurements, do not match results predicted by simple 
Lambertian and Fresnel reflections. For example, the microfacet theory accounts for the phenomenon 



called off-specular peak, occurring when the maximum reflectance is achieved for direction shifted 
away from the direction of perfect reflection, as discussed by Torrance and Sparrow [31].  

BRDFs using the microfacet model are generally called physically based to indicate they’re 
designed with laws of physics (optics) in mind rather than empirically by observation, though in 
computer graphics we often use simplifications and approximations to make computations feasible, 
and to make BRDFs more practical by eliminating physical units and parameters.  

A good example of such simplification is omitting complex index of refraction used in Fresnel 
equations. Sometimes the term physically plausible is also used to describe models that behave as 
observed real-world materials but are not necessarily derived using the laws of optics. For real time 
rendering we also typically use geometrical optics and RGB triplets to represent light instead of wave 
optics and spectral distributions. Trade-off here is that such renderers cannot account for effects like 
diffraction due to thin film interference, and polarization of light. 

 

Figure 7 A microsurface (blue) consisting of many microfacets. Microsurface normals 𝐻 (red) are shown for a few selected 
microfacets. Geometric surface and its normal 𝑁 is highlighted with gray. Note that depending on microsurface model, the 

microsurface itself does not need to be continuous as the example on this image. 

A microfacet theory models the surface as a collection of tiny surfaces – microfacets – with 
varying slope and height (see Figure 7). How much and in what way do microfacets vary is described 
by the microfacet distribution function 𝐷 (which typically depends on the roughness parameter to 
control the surface appearance). This gives the BRDF its shape which affects the final appearance of 
the material. 

Typically, individual microfacets are assumed to act as perfect mirrors, but any BSDF could be 
used for microfacets as well. Note that only the geometric surface is modeled, and the effects of 
microfacets are evaluated using the microfacet model, so we only observe their aggregate effect1. 

A microfacet model reflection term is defined as [31] [30] [32]: 

𝑅 =
𝐹(𝐿, 𝐻) 𝐺(𝐿, 𝑉, 𝐻) 𝐷(𝐻)

4 (𝑁 ∙ 𝐿)(𝑁 ∙ 𝑉)
  

where 𝑁 is a shading normal and 𝐻 is a half vector pointing in a direction half-way between 𝐿 and 
𝑉 (𝐻 =  ‖𝐿 + 𝑉‖). It is also called microsurface normal, highlight vector or half-way vector and was 
previously used by Blinn [17] to optimize the Phong shading calculation. Formulation using the half 
vector is handy as it can also be used for refraction as described by Walter [32], and for importance 
sampling by generating half vectors corresponding to given normal distribution function 𝐷 as we will 

 
1 But there is an interesting paper by Heitz which procedurally generates meshes of Beckmann distribution 
surfaces for research purposes [71] 



discuss later. All these terms will be discussed in sections below in more detail, here is just a short 
summary: 

 D Term – A microfacet distribution function – tells us what fraction of microfacets are oriented 
in direction 𝐻 so that light incoming from direction L will be reflected in direction 𝑉.  

 F Term – Fresnel term, evaluates how much light is reflected off the surface under given angle 
of incidence. 

 G Term – Geometric attenuation term (also masking and shadowing term denoted 𝐺ଶ later in 
this text), accounts for mutual shadowing (and masking) of microfacets, sometimes also used 
for normalization of BRDF. 

 Denominator – comes from derivation of the microfacet model using perfect mirrors as 
microfacets. Note that original paper by Cook and Torrance [30] uses the constant π instead 
of 4 in denominator. Walter points out [32] this is due to different normalization of 𝐷 term, 
and most recent literature agrees on using the constant 4. 

4.1 Distribution Term 
Distribution term 𝐷 uses a microfacet normal distribution function (NDF) which evaluates what 

fraction of microfacets is oriented in direction 𝐻 so that light incoming from direction 𝐿 will be 
reflected in direction 𝑉. In other words – how much light can be reflected between given 𝐿 and 𝑉 
directions assuming no occlusion occurs between individual microfacets (discussed below). NDF here 
should not be confused with normal (meaning Gaussian) distribution, although it is one of possible 
implementations of NDF (used, e.g., by Torrance and Sparrow [31]). 

 

Figure 8 “Longer tail” of GG-X distribution, shown for alpha value of 0.4. 

Various distribution functions can be found in the literature. An example is a Beckmann NDF 
widely used in optics, but also computer graphics. Beckmann distribution uses an intuitive roughness 
parameter specified as a root mean square (RMS) slope of microfacets to control its shape. Another 
important NDF was proposed by Trowbridge and Reitz [33] and recommended by Blinn in 1977 [17]. It 
was later re-derived under the name GG-X2 by Walter [32]. While Trowbridge-Reitz distribution is 
identical to GG-X and predates it, we will use simpler GG-X formulation in this article. Compared to 
Beckmann NDF, the shape of specular lobe it provides has a “longer tail”, meaning the falloff of 

 
2 GG-X is likely an abbreviation of “Ground Glass - roughness unknown” [72], named after panes of ground glass 
polished to certain roughness used for measurements in optics. 
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specular peak is slower, as shown on Figure 8. This matches many measured real-world materials more 
closely, and GG-X is widely used in games, although Beckmann distribution is still used, e.g., as 
mentioned in paper describing shading at Pixar [34]. It should be noted that evaluation of GG-X is 
generally less expensive thanks to many optimizations and approximations contributed by the graphics 
community. 

The Beckmann distribution is defined as: 

𝐷஻௘௖௞௠௔௡௡ =
𝑒

ି୲ୟ୬మ (஘೓)
ఈమ

𝜋 𝛼ଶ𝑐𝑜𝑠ସθ௛
 

where θ௛ is the angle between normal and half vector, and 𝛼 specifies the roughness. Relation 
between 𝛼 and RMS slope of microfacets 𝜎 is 𝛼 = √2𝜎  [26]. As an optimization, we can use the 

equivalency tanଶ(𝜃௛) =  
ଵି௖௢௦మ஘೓

௖௢௦మ஘೓
 as done in the article by Hoffman [35] to eliminate the tangent 

function, which we replace by handily available cosine of θ௛ which is equal to easy to calculate 𝑁 ∙ 𝐻: 

𝐷஻௘௖௞௠௔௡௡ =
𝑒

௖௢௦మ஘೓ିଵ
ఈమ௖௢௦మ஘೓

 

𝜋 𝛼ଶ𝑐𝑜𝑠ସθ௛
 

The GG-X distribution is defined as: 

𝐷ீீ௑ =
𝛼ଶ

𝜋 𝑐𝑜𝑠ସθ௛(𝛼ଶ + tanଶ(θ௛))ଶ 
 

This formula can also be further simplified [35]. We replace the tangent function in a same way 
as for the Beckmann distribution, and expand denominator, which can then be expressed as 
൫(𝛼ଶ − 1)𝑐𝑜𝑠ଶθ௛ + 1൯ squared. Resulting optimized formula is: 

𝐷ீீ௑ =
𝛼ଶ

𝜋 ൫(𝛼ଶ − 1)𝑐𝑜𝑠ଶθ௛ + 1൯
ଶ

 
 

There’s also a NDF derived by Blinn using the Phong reflection model (dubbed Blinn-Phong 
NDF) [17], and also discussed in Walter’s paper [32], where he concludes that for certain roughness 
values, Beckmann and Blinn-Phong distributions are very similar. This can explain a longevity of Phong 
shading model, as it is able to accurately represent certain materials (most notably the plastics). 
Formula for approximate conversion between Beckmann roughness and Phong exponent is also 
provided in Walter’s paper [32] (which also shows that for roughness values around 0.2, Phong 
distribution is nearly identical to Beckmann). It might seem outdated today but may come handy when 
loading older models with materials specified using the Phong exponent (e.g., in the popular OBJ 
format).  

𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 =  
2

𝛼ଶ
− 2             𝛼 =  ඨ

2

𝑠ℎ𝑖𝑛𝑖𝑛𝑒𝑠𝑠 + 2
 

As we can see, the units of roughness can be very different for each model. Torrance and 
Sparrow and Oren-Nayar models use standard deviation of normal distribution directly, Beckmann and 
Trowbridge-Reitz use statistical root mean square of slopes, while Burley uses empirically chosen 
values in plausible range. When multiple BRDFs are coupled together (typically specular and diffuse 
BRDFs), it is important to carefully convert roughness specified by artists to roughness units used by 
underlying BRDFs. A good example of such conversion can be found in Disney’s Principled BRDF [5]. As 



already mentioned, they remap roughness parameter to 𝛼 used for specular BRDF as a square of that 
value. This makes changes to roughness perceptively linear and compatible with underlying diffuse 
BRDF, but care must be taken to square the 𝛼 value again in calculations of 𝐷 and 𝐺 terms (see 
formulas above).  Alternatively, one can specify roughness for each BRDF separately for more artistic 
control.  

4.2 Geometric Attenuation Term 
Geometric attenuation term 𝐺 accounts for attenuation of reflected light due to the geometry 

of the microsurface which occurs when some microfacets block each other. It is sometimes also used 
as a normalization term of the BRDF. As pointed out by Torrance and Sparrow [31], the 𝐺 term 
counteracts the Fresnel term and is responsible for the “off-specular peak” that occurs for materials 
of certain roughness when high reflectance predicted by Fresnel is attenuated by significant shadowing 
due to 𝐺 term at grazing angles, with peak reflectance being achieved at lower angle.  

The geometry of the microsurface is given by the profile used to model its shape. There have 
been two significant microsurface profiles in use: V-Cavity model which assumes the microsurface is 
composed of V shaped grooves of certain width and height, and the Smith model based on randomized 
distribution of slopes [36]. V-cavity model was used by Cook-Torrance and Oren-Nayar in their BRDFs, 
but as shown in an extensive article by Heitz [37], Smith function is the correct one to use of these two, 
therefore, we will only discuss Smith’s 𝐺 function in this article, which is defined as: 

𝐺ଵ(𝐻, 𝑆) =
1

1 +  λ(a)
   ;   𝑎 =

(𝐻 ∙ 𝑆)

𝛼 ඥ1 − (𝐻 ∙ 𝑆)ଶ
 

where 𝑆 is either 𝐿 or 𝑉 vector, 𝐻 is a microfacet normal and λ is a function specific for the 
selected distribution function (NDF). The process to derive λ for given NDF has been described in paper 
by Brown [38] and papers by Walter [32] and Heitz [37] show λ functions (and optimized 𝐺ଵterms) for 
various NDFs (Beckmann, GG-X, Blinn-Phong):  

λீீ௑(a) =
−1 +  ට1 +  

1
𝑎ଶ

2
  ;  λ஻௘௖௞௠௔௡௡(a) = ቐ

1 − 1.259𝑎 + 0.396𝑎ଶ

3.535𝑎 + 2.181𝑎ଶ
, 𝑤ℎ𝑒𝑟𝑒 𝑎 < 1.6

0, 𝑤ℎ𝑒𝑟𝑒 𝑎 ≥ 1.6

   

Here, we show a rational approximation to λ஻௘௖௞௠௔௡௡ derived by Walter [32], rather than 
original function which requires evaluation of an expensive error function. Evaluation of 𝐺ଵ can be 
optimized for specific NDF by substituting its λ function into general 𝐺ଵformula and simplifying the 
expression, as done in our code sample. 

Another common rational approximation of 𝐺ଵ for Beckmann distributions was introduced by 
Schlick [39] in the same paper where the well-known Schlick’s Fresnel approximation appears. 
However, he approximated different version of Smith 𝐺 function [32] [35] [37], which is unsuitable for 
microfacet BRDF. 

 

Figure 9 Shadowing (left) occurs when incident light is blocked by other microfacet on the microsurface (blue). Masking 
(right) occurring when reflected light is blocked by another microfacet. 



Geometric attenuation occurs because many microfacets can be oriented in a way to reflect 
light incident under given direction, but ultimately only the one closest to the light source reflects the 
light (others are shadowed, as shown on Figure 9). Same applies for the reflected light which can be 
blocked (masked) by other microfacets on its way out of the microsurface. The Smith’s 𝐺ଵ function can 
be used for both shadowing 𝐺ଵ(𝐻, 𝐿) and masking 𝐺ଵ(𝐻, 𝑉), and their combination gives the masking-
shadowing function: 

     𝐺ଶ = 𝐺ଵ(𝐻, 𝐿) ∗ 𝐺ଵ(𝐻, 𝑉) 

This combination formula assumes that masking and shadowing is uncorrelated, however, this 
is not accurate as facets deeper in the microsurface have higher probability of being both shadowed 
and masked. This can be solved by using the height-correlated form of Smith’s masking-shadowing 
function: 

𝐺ଶ =
1

1 +  𝐺ଵ(𝐻, 𝐿) + 𝐺ଵ(𝐻, 𝑉)
 

Note that either form of 𝐺ଶ can be used for the 𝐺 term in the microfacet model reflection 
formula introduced earlier, but correlated version is preferable since it is only slightly more expensive 
and is more accurate.  A significantly optimized implementation of height-correlated 𝐺ଶ for GG-X 
distribution can be found in work by Lagarde [25]. By substituting 𝐺ଵ terms for GG-X distribution into 
formula for 𝐺ଶ and simplifying, we get the expression which contains terms that conveniently cancel 
out with denominator of microfacet model, making its evaluation even less costly. Another interesting 
approximation to height-correlated 𝐺ଶfor GG-X was introduced by Hammon [40], which is very fast to 
evaluate, but introduces some amount of error. For the Beckmann distribution, our code sample does 
not provide such optimizations and evaluates all the terms directly. 

Since the 𝐺 term effectively specifies the fraction of microfacets that are visible, the combined 
NDF and 𝐺ଵ (𝐷 ∗ 𝐺ଵ) term gives the distribution of visible normals [41] which is a base of the efficient 
sampling routine which we will discuss later.  

Note that so far, we assumed that light being shadowed or masked is lost, which is not true 
even for our simplified model with perfectly smooth microfacets. This is where the energy loss of 
microfacet-based BRDFs occurs and unfortunately, modeling multiple scattering between microfacets 
is complex and computationally expensive and is usually ignored in real-time rendering. Papers by 
Heitz [42],  Hitchhiker’s Guide by d’Eon [43], and technique used by Imageworks [44] (also discussed 
in Real-Time Rendering [45]) go into more details about this topic.  

4.2.1 Anisotropic materials 
Materials exhibiting anisotropic reflections (such as brushed metals) can be modelled by using 

anisotropic versions of NDFs and their corresponding geometric terms. Thorough discussion on this 
topic can be found in papers by Heitz [37] and Ward [46]. These functions are generally more complex 
to evaluate and are controlled by two-component roughness values (different roughness for two 
perpendicular directions). Evaluation must be performed in tangent space to ensure correct and 
consistent orientation of anisotropic specular highlight across the whole mesh. Article on Disney 
Principled BRDF [5] shows an intuitive parameterization using additional anisotropic parameter (in the 
addendum of latest version of the article). This is used in combination with standard roughness 
parameter to calculate 2D roughness within plausible range. 

A simpler solution suggested in Physically Based Rendering (p. 543) [26] still uses isotropic 
versions of NDF and 𝐺 terms but adjusts the roughness value based on the direction where anisotropic 
highlight should occur. 



4.3 Fresnel Term 
Fresnel term 𝐹 determines how much light will be reflected off the surface, effectively telling 

us how much light will contribute to evaluated BRDF. The remaining part (1 − 𝐹) will be passed to 
underlying material layer (e.g., the diffuse BRDF, or transmission BTDF). Our implementation so far 
only discusses two layers (specular and diffuse), but it is possible to create complex materials with 
many layers. The Fresnel term should be evaluated on each interface where light passes from one layer 
to another. For simplicity, the thickness of individual layers is typically zero, but some thickness could 
be modeled in combination with spectral rendering to create effects such as diffraction (iridescence) 
occurring when layer interface is thinner than wavelengths of light passing through it. For further 
discussion about layered materials, we recommend articles by Autodesk [7] and works by Jakob et al. 
[47] and Weidlich and Wilkie [48]. For implementing iridescence, an interesting read is the recent 
paper by Belcour and Parla [49]. 

Fresnel term is dependent on viewing direction with regards to the surface normal, material 
properties (index of refraction and extinction coefficient), and is expressed by the relatively complex 
Fresnel equations which, however, also account for the polarization of light. Fresnel term always 
approaches unity for grazing angles, meaning all light is reflected, although for in-between angles the 
“color shift” occurs as discussed by Cook and Torrance [30]. 

Christophe Schlick introduced a widely used approximation to the Fresnel term for use in 
computer graphics [39]. As he points out, full Fresnel Equations are not only computationally 
expensive, but depend on unintuitive index of refraction 𝑛 and extinction 𝑘 that do not fit our need 
for predictable and easy to use parameters. To complicate things further, full index of refraction is a 
complex number consisting of real part (the refraction index) and imaginary part (extinction 
coefficient) and is specified per wavelength. This is unsuitable for rendering with RGB triplets. Article 
by Naty Hoffman titled “Fresnel Equations Considered Harmful“ [50] provides further discussion on 
the topic and concludes that full Fresnel equations aren’t even more precise than Schlick’s 
approximation, unless spectral rendering is used.  

Schlick’s approximation uses the observation that when viewed under 90 degrees, all materials 
exhibit perfect reflectance, and we can use only one parameter – reflectance of the surface under 
normal incidence (at 0 degrees - 𝐹଴) to approximate full Fresnel equations: 

𝐹 = 𝐹଴ + (𝐹ଽ଴ − 𝐹଴) ∗ (1 − 𝑢ହ) 

where 𝑢 is the cosine of angle between normal and the viewing direction (𝑢 =  𝑁 ∙ 𝑉) and 𝐹ଽ଴ 
is equal to 1, except for the case discussed in the section below. Note that index of refraction and 
extinction coefficients have been eliminated, but we now need to specify reflectance at normal 
incidence 𝐹଴. Another consequence of using Schlick’s formula is that shading cannot account for 
polarization of light. An interesting work in this area is done by Mojzik et al. [51]. 

4.3.1 Specifying reflectance at normal incidence 
Elimination of 𝑛 and 𝑘 simplified the calculation, but also caused the loss of control whether 

material behaves as a dielectric (low absorption coefficient – plastic, wood, etc.) or conductor (high 
absorption coefficient – copper, gold, etc.). Difference between these is best observed as a color tint 
on reflections for metals (because part of the light spectrum is absorbed), while reflections off 
dielectrics take over unchanged color of the light source. As noted by Cook and Torrance [30], metallic 
reflections are tinted based on the base color of the material for normal incidence (denoted 𝐹଴, 
sometimes also 𝑅ி଴). Using this knowledge, we can “fix” the color of the Fresnel reflection for metals, 
by introducing a parameter called metalness [52], which calculates 𝐹଴ as a blend between default 
reflectance for dielectrics and base color for metals [53]: 



𝐹଴ = 𝑙𝑒𝑟𝑝(𝐹଴஽௜௘௟௘௖௧௥௜௖௦, 𝑏𝑎𝑠𝑒_𝑐𝑜𝑙𝑜𝑟, 𝑚𝑒𝑡𝑎𝑙𝑛𝑒𝑠𝑠) 

A common choice for 𝐹଴஽௜௘௟௘௖௧௥௜௖௦ is 0.04 (4% reflectivity) as used by, e.g., UE4 [12] and 
Frostbite [25]. Note that reflectance of some real world materials is even lower, 2% for water, but can 
also be higher for some dielectric materials, e.g., 0.18 for diamonds [35]. This value doesn’t change 
with material but is fixed in the renderer and its choice has significant impact on final appearance. 
Metalness also attenuates diffuse reflectance for metals [30] [52], which is calculated from base color: 

𝑑𝑖𝑓𝑓𝑢𝑠𝑒_𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 = 𝑏𝑎𝑠𝑒_𝑐𝑜𝑙𝑜𝑟 ∗ (1 − 𝑚𝑒𝑡𝑎𝑙𝑛𝑒𝑠𝑠) 

This combination of parameters (base color and metalness) is sometimes called the metalness 
workflow, and is restrictive in a way that it doesn’t enable setting different color hues for diffuse and 
specular reflectance. Another approach is „specular workflow“ which enables to specify diffuse and 
specular reflectance directly [54], rather than calculating it from the base color. It requires more 
storage, but allows for greater artistic freedom by making it possible to create wider variety of 
materials, including unrealistic ones with significantly different diffuse and specular reflectance. 

For some materials, even more control over the transition from 𝐹଴ to 1 may be desirable to 
reduce error of Schlick’s approximation. RGB values for 𝐹଴ have been measured or calculated for 
normal incidence, but for some materials the color hue can differ slightly for in-between angles (e.g., 
certain metals and coated surfaces), or when we want to create unrealistic materials – unobtainiums). 
Gulbrandsen [55] addressed this problem by introducing two parameters to control reflectance and 
parameter he called edge-tint. More recently, Hoffman provided an improved solution [50] by 
introducing additional parameter denoted h to control edge-falloff, which includes Lazanyi’s error term 
[56] to reduce Schlick’s approximation error. The h parameter can be understood as 𝐹 ଶ [57] – a 
reflectance at 82 degrees and can be either calculated using ground truth solution or measured for 
given material. 

Note that 𝐹଴ originally depends on refraction indices on both sides of the surface and it is often 
assumed that surface is surrounded by air. If this is not the case (e.g., under water), 𝐹଴ should be 
adjusted accordingly (see, e.g., Real-Time Rendering p.324 [45]). 

The above mentioned Lazanyi’s fix re-introduces n and k parameters (but not needed in 
Hoffman’s solution). If needed, these can be found for various materials in the excellent database 
created by Polyanskiy [58], however, still specified per wavelength.  

An interesting optimization to Schlick’s Fresnel term was proposed by Lagarde which uses the 
Spherical Gaussian approximation [59] and has been used in UE4 [12]: 

𝐹 = 𝐹଴ + (𝐹ଽ଴ − 𝐹଴) ∗ 2(ିହ.ହହସ଻ଷ∗௨ି଺.ଽ଼ଷଵସ଺)∗௨ 

Important implementation detail is that the Fresnel term must be evaluated for the normal of 
the sampled microfacet (half vector), rather than the surface (or shading) normal, otherwise the 
roughness of the material would be essentially ignored for Fresnel term and object would appear more 
reflective than it is.  

A related issue comes from the fact that normal mapping is often used to create cavities, 
scratches, or patina, where artists darken the base color to make these features less reflective. Because 
Fresnel term always approaches 1 at 90 degrees, the effect is often the opposite of artist’s intention, 
and cavities become more reflective, because their normals are approaching 90 degrees angle to the 
view direction. One of possible solutions is a fix introduced by Schüler [60], which prevents Fresnel 
term from approaching 1 under certain conditions. Instead of setting 𝐹ଽ଴ = 1, we calculate 𝐹ଽ଴ as 
𝐹ଽ଴ = min (1, 60 𝑙𝑢𝑚𝑖𝑛𝑎𝑛𝑐𝑒(𝐹଴)). This creates a smooth, but very fast falloff from 1 for 𝐹଴ values 



with reflectance less than 1/60. Number 1/50 or reciprocal of the value 𝐹଴஽௜௘௟௘௖௧௥௜௖  is also often used 
in this place. We know that no real world material reflects less than 2%, so these low values can be 
considered as reserved for limiting of the Fresnel term. Finally, notice that this approach will not have 
any effect when 𝐹଴ is calculated using metalness as it is by default in our code sample, because no 𝐹଴ 
will be less than 𝐹଴஽௜௘௟௘௖௧௥௜௖ . We provide this fix in the code for completeness, since it will be useful 
for cases when 𝐹଴  is calculated using different way or set directly by artist. Some engines provide the 
occlusion value that can be applied on specular component or used for Schüler’s fix instead for similar 
effect. Note that there’s only a handful of 𝐹଴ values that will trigger this fix when it comes from an 8-
bit texture. More discussion on this topic can be found at the end of Hoffman’s Crafting Physically 
Motivated Shading Models for Game Development [61]. 

4.4 Sampling the microfacet BRDF 
With all this knowledge, we can now implement the eval function for microfacet specular 

BRDF, see the code sample accompanying this article for full listing. 

For efficient implementation of sample method, we need a routine that performs importance 
sampling of microfacet BRDF constructed using selected 𝐷 and 𝐺 functions. In this article we use 
sampling based on VNDF introduced by Heitz [41], who also provided an improved and optimized 
version of his sampling for GG-X distribution in the separate article [62].  

This sampling routine works with vectors specified in local space, where the positive Z axis is 
aligned with the shading normal (like most sampling functions). We must therefore transform our view 
vector into this local space before sampling, and transform the resulting light vector back using the 
inverse of such transform. Note that many renderers perform shading in tangent space, e.g., due to 
normal mapping, which is similar but not the same as local space of VNDF sampling. While tangent 
space may be constructed around geometry normal, our local space surrounds the shading normal. 
Therefore, additional transformation will be necessary also for the vectors already specified in tangent 
space. 

Unit quaternions are an elegant way of representing rotations, and because we aim to find 
rotation between shading normal and standard basis vector (0, 0, 1), construction of such quaternion 
can be significantly simplified. Therefore, we use quaternion rotations for transforming vectors to 
VNDF local space and back (inverse transformation is found by simply inverting the axis of the 
quaternion). 

To obtain the weight of the sampled direction, we must calculate BRDF divided by PDF of this 
sampling method as discussed in Section 3.1. Thanks to the construction of VNDF sampling, many 

terms of the BRDF cancel out with the terms of the PDF, and resulting weight is just 𝐹 ∗ (
ீమ

ீభ(ு,௏)
). 

Fraction of 𝐺ଶ and 𝐺ଵ can be rewritten using 𝐺ଵ௅ and 𝐺ଵ௏  terms only, as shown in the appendix of 
Heitz’s paper on diffuse BRDF [28]. Because vector 𝐻 here is constructed to be exactly halfway 
between 𝐿 and 𝑉, the 𝐺ଵ௅ term is equal to the 𝐺ଵ௏, and we can further optimize its evaluation as done 
in our code sample.  

Original implementation of VNDF sampling (provided in supplemental material with VNDF 
paper [41]) relies on precomputing data during initialization, and as pointed out by Wenzel Jakob [63], 
a version for Beckmann distribution contains a discontinuity, which may cause problems when using 
low discrepancy sequences (e.g., blue noise), or for light transport algorithms such as Metropolis light 
transport. Jakob’s paper contains an improved method which fixes these deficiencies, including the 
code. Previously widely used method that should be mentioned was introduced by Walter [32], but is 
less efficient than VNDF and has an undesirable property of generating samples with potentially very 



large sample weights which lead to fireflies (although this can be partially mitigated for Beckmann 

distribution using the “Walter’s trick” by adjusting roughness as (𝛼ᇱ = (1.2 − 0.2ඥ|𝑁 ∙ 𝐿|)𝛼). 

5 Combining BRDFs 
To couple specular BRDF with diffuse BRDFs in this article, we use a simple method of blending 

specular and diffuse BRDFs together based on the Fresnel term. Note that microfacet model already 
weighs specular BRDF by 𝐹, so we additionally weigh diffuse BRDF by (1 − 𝐹). This is inspired by an 
idea of layered materials where light interacts with each layer and Fresnel term is used to evaluate 
how much light reflects off the surface (contributing to specular lobe) and how much scatters into the 
surface (contributing to the lower layer, in our case, the diffuse lobe). Using this method, arbitrary 
BRDFs can be used together and combined into multiple layers [48], for example, a widely used 
combination of microfacet-based GG-X specular BRDF and either Lambertian or Disney diffuse BRDF. 
More complex multi-layered materials typically use one or two specular lobes (where additional 
specular lobe simulates a transparent coating on top of base surface), diffuse BRDF with optional 
subsurface scattering and BTDF for transmission. Note that each BRDF in the layered material should 
be energy conserving by itself. 

Notice that to evaluate the diffuse BRDF layer, we need to know the Fresnel term of specular 
BRDF layer. In our code we sample a half vector for the specular BRDF and use it for Fresnel term 
evaluation, even when only diffuse term is evaluated. This can be expensive, so a better method with 
using an approximate normalization terms or tabulated data can be used instead.  

More correct, but also more rigid solution is to use models which contain both diffuse and 
specular models that are designed to work well together, e.g., models by Ashikhmin-Shirley [21] and 
Kelemen-Szirmay-Kalos [64]. Another option is to select the preferred BRDF and find a suitable diffuse 
BRDF which can then be simply summed together. An example of this approach is the modification to 
Disney diffuse done by Lagarde [25]. More information on multi-layered materials used in practice can 
be found, e.g., in the talk on Call of Duty materials [65]. 

When combining the multiple BRDFs, the resulting BRDF should still obey to the basic principles 
of assuring energy conservation and Helmholtz reciprocity, however that is in practice often difficult 
to achieve. 

5.1 Energy Conservation 
One of the basic principles that BRDFs must respect stated in the introduction section is the 

requirement of energy conservation – the surface should not reflect more light than it receives. 
Furthermore, if the surface is a perfect reflector (white albedo), no energy loss should occur as well. In 
practice, it is often the case that some energy loss occurs even for physically based BRDFs derived from 
the microfacet model. The main source of energy loss being the lack of multiple reflections between 
microfacets.  

When constructing material models for real-time rendering, the problem of energy 
conservation was often overlooked in the past, especially when only single bounce lighting was used. 
For path ray tracing and global illumination algorithms, it is important to ensure that no energy is 
created when light bounces off the surface, otherwise the convergence of path tracers could not be 
guaranteed.  



 

Figure 10 White furnace test showing BRDF with perfect energy conservation (left) and BRDF with an energy loss (right). 

An easy to implement and practical test of energy conservation is the white furnace test [37], 
which is a rendering of a white sphere illuminated by white light from all directions. If the material is 
energy conserving, the sphere will disappear against the white background. Any differences indicate 
either energy loss or gain (see Figure 10). Because rendering of the sphere contains every possible 
configuration of view and light vectors, we get a good sense about angles where the energy gain or 
loss occurs.  

6 Parametrizing the BRDF 
In this section we will summarize how do parameters of described BRDFs relate to material 

properties set by artists. So far are we have used the following parameters: 

 Specular BRDF 
o Specular Reflectance at normal incidence 𝐹଴ 
o Specular Reflectance at 82 degrees 𝐹 ଶ (optional) 
o Roughness 

 Diffuse BRDF 
o Diffuse Reflectance 
o Roughness 

All these parameters could be set directly for greater artistic freedom (as single values or 
loaded from textures), or to model materials with known values (either measured or precalculated), 
but it is common to limit values that can be set for reflectance and roughness to make it easier to 
specify physically plausible materials and to make material properties more compact for storage. 

Instead of using diffuse and specular reflectance directly, we use base color and metalness 
parameters to calculate them as described in the Section 4.3. This ensures that physically impossible 
materials are not easily created, and it also enables us to model distinction between dielectrics and 
metals. Roughness value is specified directly and remapped for specular BRDF the same way as in 
Disney Principled BRDF (by squaring). 𝐹 ଶ is only used with Hofmann’s improved Fresnel approximation 
and is especially useful to improve appearance of metals with known 𝐹 ଶ values such as chrome or 
gold. 

6.1 Transmission 
To introduce an effect of transmission needed for rendering of semitransparent surfaces, we 

can reuse the concepts already discussed in this article – namely the Fresnel term, microfacet model 
and layered-materials. Fresnel equations tell us how much light is reflected away and scattered into 



the surface, so we only have to decide what part of light that scatters inside is going to contribute to 
the diffuse BRDF, while remaining part is going to contribute to BTDF. We introduce a new parameter 
to our material model – the diffuse probability, or transmittance, which directly specifies ratio of how 
much scattered light is going to contribute to diffuse BRDF and to the BTDF. Note that this parameter 
is not the same as opacity which also affects specular BRDF, because we will still get Fresnel reflection 
under grazing angles for materials with high transmittance, while objects with zero opacity disappear 
completely.  

The transmitted part of light can be either refracted perfectly according to Snell’s Law, or we 
can use a microfacet BTDF to create rough refractions, the same way we created rough reflections. 
Walter’s paper [32] provides an extensive summary of this method and resulting model for refractions 
is similar to microfacet reflection term. 

7 Code Sample 
 This article comes with the code sample (https://github.com/boksajak/brdf), where all 
discussed BRDFs are implemented. File is written in HLSL, but also compiles in C++ environment (with 
the addition of a library to support HLSL types and functions, such as GLM), and can be easily integrated 
into rasterizer or path tracer. Note that code can be further optimized for the selected combination of 
BRDFs that will be used. 

The default setting is combination of GG-X based microfacet specular BRDF with Lambertian 
diffuse BRDF, which are highly optimized and work well together. A code sample can be integrated by 
calling functions evalCombinedBRDF to evaluate contribution of a given light source to given point, and 
evalIndirectCombinedBRDF which samples new ray direction and its weight based on the selected 
BRDF (diffuse or specular), to determine a direction of the next ray in the path tracer. 

8 Conclusion and Further Reading 
In the production of movies and games, it can be more important to create material models 

that are physically based and plausible, rather than fully realistic. This means having models which do 
not break laws of physics (too much), but also enable enough artistic control by exposing intuitive and 
easy to understand parameters, even at the cost of omitting physical quantities such as the index of 
refraction.  

It is interesting to see what parameters (and their ranges) individual models expose. An article 
on Disney Principled BRDF by Brent Burley [5] is a great starting point which discusses choice of 
parameters, ranges, and their mappings, along with technical decisions of choosing underlying BRDFs 
to construct successful material model. There’s also interesting discussion on comparison with real 
world materials measured in the MERL database. It also provides chronologically sorted list of notable 
works worth studying (but only until 2012 when his paper was published) and there is a Github 
repository with their code freely available [66]. A follow-up article was published by Burley in 2015 [6] 
with more improvements based on practical use of their model.  

For implementations used in games there are excellent works by Lagarde (Frostbite) [25], Karis 
(Unreal) [12] and Lazarov (Call of Duty) [67]. It is interesting to see how different developers came to 
different conclusions to same questions (e.g., use of Lambertian versus Disney diffuse, choice of GG-X 
versus Beckmann NDF distribution, etc.) indicating there is no single universal answer to these 
questions.  

Deeper theoretical background of physically based BRDFs can be obtained by studying chapter 
9 in Real-Time Rendering [45], which provides more pointers to relevant works, chapters 8 and 9 in 
Physically Based Rendering [26], from Naty Hoffman’s Background: Physics and Math of Shading [35], 



Graphics Codex [10] and from Eric Heitz’s works on BRDFs. Physically based shading course webpages 
contain huge number of resources for further studies. It is also worth familiarizing with Substance PBR 
guide [54] to understand how technical artists work with PBR materials. 

BRDFs used in movie production and offline rendering can be studied in articles by Burley [5] 
[6], descriptions of Arnold renderer [68], rendering at Pixar [34] and the material used by Autodesk 
[7]. These generally expose more parameters to artists than BRDFs used in games (for example the 
clearcoat and sheen parameters). 

Because BRDF and materials terminology used across research and computer graphics industry 
is often confusing, and many terms are used interchangeably or incorrectly, we recommend reading A 
Taxonomy of Bidirectional Scattering Distribution Function Lobes for Rendering Engineers by McGuire 
et al. [69]. 

For an inspiration of what specific values to use to model different kinds of metals, there’s a 
beautiful material study by Jarrod Hasenjager [70]. 

Another interesting topic to study is development of specialized BRDFs to solve a specific 
problem, e.g., rendering of skin, hair, textile, scratched surfaces, time-varying materials, water, and 
many other special materials. 
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