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1 Introduction 
As I recently went through a journey of learning how to make use of deep learning (in the context 

of computer graphics), I thought it would be good to write down some notes to help others get up to 

speed quickly. The goal of this article is to make the reader familiar with terms and concepts used in deep 

learning and to implement a basic deep learning algorithm. This should make it easier to study and 

understand other deep learning resources. This article comes with the source code and a sample 

application written in HLSL/DirectX 12 available at https://github.com/boksajak/Dx12NN. 

2 Neural Network 
 Deep learning algorithms are powered by artificial neural networks. These are collections of 

interconnected neurons (also called units), usually organized into layers. When a neural network has large 

number of layers, we say that the network is deep, giving us a name deep learning. Each neuron has its 

inputs connected to other neurons via weighted connections, performs a simple computation over them, 

and passes its output to other neurons.  

The type of neural network that we’re going to use in this article is called multilayer perceptron 

(MLP). It is relatively simple, but also powerful, and is widely used in practice (e.g., for neural radiance 

cache (NRC) and neural radiance fields (NeRFs). 

 The MLP is constructed as follows: 

o Neurons are organized into layers, where first layer is called input layer, last layer is output 

layer and between them are hidden layers. 

o Each neuron has its inputs connected to outputs of all neurons in the previous layer. 

Therefore, we say that MLPs are fully connected networks, see the Figure 1 for an example. 

o This network architecture forms a directed acyclic graph, meaning that information only flows 

in one way, starting in the input layer and propagating through hidden layers to the output 

layer. We say that such network is a feedforward network. 

▪ Note: Other network types, where information can also flow backwards (via feedback 

connections) are called recurrent networks. Some networks also have memory cells 

to store values from previous evaluations of the network. 

Number of neurons and layers in the network determines how powerful the network is. Larger 

networks have the ability to learn more complex functions (we say that they have a larger capacity) but 

are typicallyf more difficult to train and slower to evaluate. When designing a deep learning algorithm, we 

need to find a network size which is just right for the task. E.g., the NeRF paper uses MLP with 9 hidden 

layers consisting of 256 neurons each, and NRC uses 5 hidden layers with 64 neurons. 

Note that these networks are small enough that they can be implemented in compute shaders 

and executed per pixel. In practice, some clever optimizations are necessary but it’s not impossible to have 

a deep learning algorithm running in real-time on current GPUs. It is also common to run neural networks 

using types with reduced precision, like FP16 or even smaller. 

https://github.com/boksajak/Dx12NN


 

Figure 1 Architecture of a multi-layer perceptron neural network with 2 neurons in the input layer, 3 neurons per hidden layer 
and 1 neuron in the output layer. 

2.1 The Neuron 
All the computation that neural network does happens in the neurons. Output value of the neuron 

(also called its activation) is calculated as follows: 

1. First, we sum up activations of all neurons from the previous layer connected to this neuron, weighted 

by the strength of the connection (this strength is also called the weight) 

2. We add bias of the evaluated neuron to the sum. Bias is a per-neuron value which helps to represent 

non-linear relationships between network inputs and outputs. Without the bias, output of the 

network for zero input could only be a zero. 

3. We apply the activation function to this sum to produce final neuron activation. This must be a non-

linear function, which introduces another non-linearity between inputs and outputs. Usually, we use 

a simple function like max(0, 𝑥). Without the activation function, outputs of the network could only 

be a linear combination of the inputs. 

More formally, we can write neuron evaluation as: 

𝑂𝑖 = 𝜎((∑𝑂𝑗 ∗ 𝑤𝑖𝑗

𝑀

𝑗

)+ 𝑏𝑖) 

where 𝑂𝑖 is the activation of the evaluated neuron, 𝜎 is the activation function, 𝑀 is the set of 

input neurons connected to the evaluated neuron, 𝑂𝑗 is the activation of the input neuron 𝑗 from previous 

layer, 𝑤𝑖𝑗 is the weight of the connection between neurons 𝑖 and 𝑗 and 𝑏𝑖 is the bias value of the evaluated 

neuron. 



This means, that the output of the network for specific input is given by weights and biases and 

we need to set them accordingly to produce desired results. The process of adjusting weights and biases 

to make the network do what we want is called training. 

2.2 How To Use an MLP 
 Neural networks based on MLPs are usually used for one of two main tasks: classification and 

regression: 

o Classification: Categorizes the input into one (or more) predefined categories. These neural 

networks have one output neuron for each category and assign a probability of input 

belonging to each category as its output. E.g., we can have an input image of a hand-written 

digit and train the MLP to assign probability of the digit belonging into categories representing 

digits from 0 to 9. This exercise is a common “hello world” example in deep learning and there 

is a freely available set of images of hand-written digits called MNIST that can be used for it. 

o Regression: For given input, the regression calculates a continuous numerical value on the 

output (also called a prediction). The goal is to train the network to perform a desired 

mapping between inputs and output values. E.g., the NRC algorithm trains the network to 

map inputs like surface position and normal to radiance values. 

In our sample application we will train the network to do regression, specifically it will learn to 

represent a 2D texture. We will provide UV coordinates of the texture as inputs, and we’ll expect RGB 

value of the corresponding texel on the output. We want it to learn the mapping: 

(𝑢, 𝑣) → (𝑅, 𝐺, 𝐵) 

 For this example, our network will have 2 neurons in the input layer, corresponding to the 𝑢 and 

𝑣 coordinates in the texture. On the output, we will have 3 neurons corresponding to the RGB values of 

the texel. In practice, it is common to encode the input into different representation. A naïve encoding 

which simply assigns inputs to input neurons as they are is called identity, and while it works, some clever 

encoding schemes usually perform much better. We’ll talk more about input encodings in section 4. Note 

that the input layer doesn’t perform any computation – instead of calculating activation of the neurons in 

the input layer, we simply assign input values as their activations. 

Before we can use the MLP, it must be trained to perform our desired mapping well. Training is 

relatively complex and will be described in section 3, so let’s now assume that we have trained the 

network, obtained the correct weights and biases and we want to calculate the network output 

(prediction) for given input – this process is also called inference and because the information flows 

forward through the network, it’s sometimes also called the forward pass. 

2.3 Inference Implementation 
With the architecture of the MLP in mind, let’s now implement the inference. Before we start, it 

is useful to make it clear how we index data of the neural network in the arrays of weights, biases, 

activations etc. We need to store activations and biases per neuron, and the weights per connection 

between neurons. It is easy to make a mistake in indexing when working with graphs (our neural network 

is a graph), so let’s define a few rules for our indexing scheme: 

o We will index layers starting from 0: input layer has index 0, and output layer has index 

LAYER_COUNT – 1. Because the input layer doesn’t do any computation, it might be possible 

https://git-disl.github.io/GTDLBench/datasets/mnist_datasets/


to skip it and start indexing from the first hidden layer, but we want to keep things clear and 

simple. 

o Connections between neurons will “belong” to the layer they are leading to. This means that 

layer 0 (input layer) doesn’t have any connections, and layer index LAYER_COUNT – 1 has 

connections from last hidden layer to the output layer. 

o Neurons in each layer are indexed from 0 to NUM_NEURONS_PER_LAYER 

With this in mind, let’s define some helper functions to access data in global arrays: 

uint getNeuronDataIndex(uint layer, uint neuron) 
{ 
    return neuronDataBaseOffsets[layer] + neuron; 
} 
 
uint getConnectionDataIndex(uint layer, uint neuronFrom, uint neuronTo) 
{ 
    return connectionDataBaseOffsets[layer] + (neuronTo * neuronsPerLayer[layer - 
1]) + neuronFrom; 
} 

Base offsets used in these functions are pre-calculated for each layer based on number of layers 

and number of neurons per layer in the network. Details can be found in the source code accompanying 

this article in the function createComputePasses. 

With these in place, we can now implement a forward pass which: 

1. Encodes input into activations array. 

2. Iterates through all the layers where computation happens (all except the input layer). 

a. Evaluates activation for each neuron in the layer. 

3. Reads output from the activations array and returns it. 

float activations[LAYER_COUNT * MAX_NEURONS_PER_LAYER]; 
 
// Identity encoding passes input as it is 
activations[0] = input.x; 
activations[1] = input.y; 
     
// Calculate activations for every layer, going forward through the MLP network 
for (uint layer = 1; layer < LAYER_COUNT; layer++) 
{ 
    const uint neuronCountCurrentLayer = neuronsPerLayer[layer]; 
    const uint neuronCountPreviousLayer = neuronsPerLayer[layer - 1]; 
 
    for (uint neuron = 0; neuron < neuronCountCurrentLayer; neuron++) 
    { 
        const uint neuronDataIndex = getNeuronDataIndex(layer, neuron); 
           
        // Evaluate neuron activation 
        float neuronValue = nnBiases[neuronDataIndex]; 
           
        // Accumulate weighted contribution from all neurons connected to this 
neuron in previous layer 
        for (uint previousNeuron = 0; previousNeuron < neuronCountPreviousLayer; 
previousNeuron++) 
        { 



            const uint weightDataIndex = getConnectionDataIndex(layer, 
previousNeuron, neuron); 
            const uint previousNeuronDataIndex = getNeuronDataIndex(layer - 1, 
previousNeuron); 
                 
            neuronValue += nnWeights[weightDataIndex] * 
activations[previousNeuronDataIndex]; 
        } 
             
        activations[neuronDataIndex] = ACTIVATION_FUNCTION(neuronValue); 
    } 
} 
 
const uint outputLayerActivationIndex = getNeuronDataIndex(LAYER_COUNT - 1, 0); 
const float3 result = float3(activations[outputLayerActivationIndex + 0],  
                             activations[outputLayerActivationIndex + 1],  
                             activations[outputLayerActivationIndex + 2]); 

Note that our code has allocated an array called activations where we store activations of all 

neurons during the forward pass. But for inference we only need to store activations of 2 layers at any 

time: the one that we are evaluating and the previous layer. As an optimization, we can allocate two 

smaller arrays with the size NUM_MAX_NEURONS_PER_LAYER and ping-pong between them. However, 

during the training we will need to store activations for all neurons from the forward pass to perform a 

backpropagation pass. 

2.4 Activation Functions 
In the previous code listing, we have used the macro called ACTIVATION_FUNCTION in the place 

where we want to evaluate the activation function. Let’s now define it – remember that this must be a 

non-linear function, but we can pick any function assuming that it is differentiable (it has a derivative). The 

derivative will be needed for training.  

Some of the functions commonly used are ReLU (rectified linear unit), leaky ReLU and sigmoid: 

𝜎𝑅𝑒𝐿𝑈(𝑥) = max⁡(0, 𝑥) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑥) = {
⁡0.01𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑 =

1

1+⁡𝑒−𝑥
 

Even though ReLU and leaky ReLU are very simple, they work well and are widely used, e.g., by 

both NeRF and NRC papers. The 0.01 value (slope) in leaky ReLU implementation is a variable and you can 

experiment with different values. Usually, the whole network uses the same activation function, but it is 

not uncommon for output layer to have a different function than hidden layers. 

Let’s now look at derivatives of these functions: 

𝜎𝑅𝑒𝐿𝑈
′ =⁡ {

0, 𝑥 < 0⁡
1, 𝑥 > 0

⁡⁡⁡ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜎𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
′ (𝑥) = ⁡ {

0.01, 𝑥 < 0
1, 𝑥 > 0

⁡⁡⁡⁡⁡ 

𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑
′ (𝑥) = 𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)(1 −⁡𝜎𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) 

Note: the derivative of ReLU and leaky ReLU is undefined at point zero, because the function is 

discontinuous there, but in practice we must use a value of 0 in that point. 

For our sample application, we use leaky ReLU by default. Sigmoid function is also available, but 

the training takes a much longer time compared to ReLU and leaky ReLU. 



3 Training 

3.1 How the Neural Network Learns  
In this article, we implement neural network training based on a common supervised learning 

method. Supervised learning means that we evaluate the neural network on inputs for which we know 

correct outputs that we’d like to get, and we adjust it to give us results closer to desired outputs. Each 

input is called a sample or an example, and all inputs available for training are called a training set.  

For each sample from the training set, we start by comparing network’s prediction to the correct 

output using a cost function. This function tells us how good the prediction was (lower is better). Then, 

we will update weights and biases in a way that minimizes this cost function. This is done using an 

algorithm called gradient descent. The gist of it is that we first calculate how the cost function changes if 

we change individual weights and biases, and then we adjust them in a direction that lowers the cost. In 

the following text, we will often refer to “weights and biases”, but I’m only going to write “weights” to 

keep the text more readable. Keep in mind that what applies to weights also applies to biases here. 

To know how to adjust the weights to lower the cost we need to calculate a value for each weight that 

tells us how the cost function changes when that specific weight changes. These are called partial 

derivatives of a cost function wrt. the weight. The vector of all partial derivatives of our weights is called 

a gradient.  

Now we can imagine the cost function as a multi-dimensional surface. The gradient points in a 

direction where the cost function rises most steeply. We can think about stochastic descent as a ball rolling 

down the hill on this surface (position of the ball is given by the current network state and the cost function 

value). We want to get the ball as low as possible to minimize the cost. By calculating gradients (which 

point up the hill on this surface), and moving in opposite direction, we basically roll the ball downhill to 

some local minimum. Gradient is calculated using the algorithm called backpropagation which we’ll 

discuss in section 3.5. The process of adjusting the weights is also called an optimization of the network. 

Once we have calculated the gradient, we can simply nudge the weights in an opposite direction by 

some small amount. This method of minimizing the cost function will eventually get us to a local minimum 

of the cost function. Note that this method doesn’t find a global minimum (unless it gets very lucky), but 

in practice this is not a huge issue for highly dimensional problems which typically have many local minima, 

with values similar to the global minimum. 

We repeat this process many times to iteratively lower the cost. In each step, weights are not adjusted 

by the whole magnitude of the gradient, but we first multiply it by a small number (e.g., 0.0001) to take 

smaller steps. This multiplication constant is called a learning rate, and it tells us how fast the gradient 

descent should progress along the path to the local minimum. Without the learning rate, gradient descent 

would be taking very large steps, while being unstable and oscillating around the local minimum. Picking 

a right learning rate is critical in order to ensure that training will be stable, but also sufficiently fast. In 

practice, we will often have an adaptive learning rate. We will start with highest learning rate, and we 

lower it after each training step according to some schedule (e.g., linearly or exponentially). In practice, 

more advanced optimizers are used to adjust the weights, like the Adam optimizer that we’ll describe in 

section 5. 

Learning rate is what we call a hyperparameter – it’s a parameter of a neural network implementation 

which is not learned by training, but rather set by a user. More advanced training algorithms have many 



hyperparameters. Important thing to realize is that we don’t always have to set hyperparameters manually, 

but we can have other optimizing algorithm (even one based on machine learning) finding the optimal 

values of hyperparameters for us. 

Let’s now look at the overview of how the whole training algorithm with gradient descent works. The 

single training step does the following: 

1. Evaluate the network for each sample from a training set. 

a. Calculate a cost function for each sample, using the calculated and expected outputs. 

b. Calculate a gradient for each sample. 

2. Average the gradients calculated in step 1b (so that we obtain one partial derivative value for each 

weight and bias in the network). 

3. Optimize the network: scale the averaged gradient by learning rate and subtract it from the 

current weights to obtain new weights. 

4. Repeat from step 1.  

Going through all the inputs in the training set is called an epoch and we’ll need many epochs before 

the network converges to a local minimum of a cost function. Going through all the inputs in every step 

can be cumbersome, as the algorithm goes through the whole data set every time. As an optimization, we 

can use a modified method called stochastic gradient descent (SGD). 

3.2 Stochastic Gradient Descent 
 In practice, we don’t need to go through the whole training set before updating the weights. We 

can split the training set into a number of random subsets (batches) and update weights after processing 

every batch. This way, we will perform weight updates more often, achieving faster learning and 

consuming less memory. The downside is that our gradient is not so precise anymore and it doesn’t guide 

us to the local minimum along the shortest path. But if our subsets are good representatives of a whole 

training set, this doesn’t pose a big problem in practice. The process of using batches is also called mini-

batching. SGD introduces at least two new hyperparameters – batch size and number of epochs to perform 

per training step. 

Remember that our sample application wants to train the network to represent a 2D image, 

mapping UV coordinates to RGB texel values. We will use SGD for that, taking a batch of 2048 samples per 

each training step, and we’ll take one training step per frame. If we had to go through all the texels in every 

training step, the memory requirements and runtime performance would be unusable. For our example, 

we don’t even need to store the training set explicitly, we can simply generate desired number of random 

samples in run-time by randomly sampling the texture.  

3.3 When To Stop Training 
The training as described above can in theory run indefinitely – improving the predictions and 

getting the cost function lower and lower. It is unlikely that it will ever reach zero, due to constraints of the 

neural network architecture and learning algorithm. In practice, we have to decide at some point that 

training has reached the best state possible and stop. At first it seems that we can set a threshold for the 

cost function that we want to reach and stop after achieving it, but there is a problem: If we only measure 

the cost on training data, we won’t know how it will perform on real world data it has not seen before. 

This is the problem of generalization. We want the network to perform well also on general data that it 

has not seen during the training. As the training progresses, the neural network will start remembering 



the training data, instead of learning some general relationships between inputs and outputs, and it will 

fail to generalize well to new data. We also say that our model is overfitting in this case. 

To solve this, we should also track a validation error measured on a data set which is separate 

from the training set. This error will be high at the beginning (just like the training error), and will get lower 

with training, but after some time it will start to rise again. This rise happens at the point when neural 

network stops generalizing well to data not seen by training, and it is the point when we should stop 

training. It is common to create a validation set from the training data that we have available by splitting 

it into 80% training set and 20% validation set. It is, however, necessary to make sure that training and 

validation sets don’t mix. This method of stopping the training when validation error start rising is called 

early stopping. 

Note that some algorithms like NRC don’t ever stop training – they run in real time to make sure 

that neural network adapts to changes in the scene. Our sample application also runs the training 

continuously because for our use case, the generalization is not a problem, we simply want it to learn one 

input image as good as it can.  

3.4 Cost Function 
 For our sample application, we will use a mean squared error (MSE) as a cost function: 

1

𝑛
∑(𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2
𝑛

𝑖=1

 

There are also other cost functions used in practice, like the L1 loss or L2 loss. We can use any 

function which gives lower score to better outcomes, but the function must have a derivative, which we’ll 

need for calculating the gradient. 

Cost function is often also called a loss function and its value simply a loss. Cost functions can also 

have additional regularization terms which impose additional cost, e.g., for case when weights and biases 

get very large (this is called weight decay). This will force the weights to be as small as possible, which can 

help to prevent overfitting. 

3.5 Backpropagation 
 Let’s now discuss how we calculate the gradient using the backpropagation algorithm. As the 

name suggests, the algorithm starts at the output layer and continues backwards through the network. It 

is therefore also called the backward pass through the network. 

 The goal of this algorithm is to calculate partial derivative for each weight and bias wrt. cost 

function, which we designate as 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗
 and 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
. Before we start let’s formally define some things we’ll 

need to calculate those partial derivatives:  

𝑍𝑖 =⁡∑𝑤𝑖𝑗𝑂𝑗 + 𝑏𝑖 

𝑂𝑖 = 𝜎(𝑍𝑖) 



where 𝑍𝑖  is the output of the neuron 𝑖 without applying activation function,  𝑤𝑖𝑗 is a weight of the 

connection to the neuron 𝑗, 𝑂𝑗 is the activation of connected neuron⁡𝑗 , 𝑏𝑖 is the bias value, 𝑂𝑖 is the output 

with activation function applied, and 𝜎 is the activation function. 

So how can we calculate these partial derivatives knowing the cost function value? The trick is to 

split calculations of 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗
 and 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
 into several derivatives which are easier to calculate and combine 

them using a chain rule. Let’s start with the simplest, which is 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
. This is the same as 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑖
, and is also 

called an error of the neuron: 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
=⁡

𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑖
 = 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
 ∙
𝜕𝑂𝑖

𝜕𝑍𝑖
 

We have now split 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
 into two simpler derivatives 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
 and 

𝜕𝑂𝑖

𝜕𝑍𝑖
. For the neuron in the output 

layer, 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
 is just telling us how the cost changes when its activation changes. This is equal to the partial 

derivative of the cost function with respect to evaluated neuron. When we use the MSE cost function, 

this derivative is: 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
= 𝑐(𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 𝑂𝑖) 

where 𝑐 is the constant coming from the derivation of MSE (in our sample where target is a 3-

component vector, the 𝑐 is equal to 2 ∗
1

3
= 0.666̅̅̅̅ . In code, we can ignore this constant as it would only 

scale the whole gradient by the same number, and the gradient scale is already controlled by learning rate. 

Next is the 
𝜕𝑂𝑖

𝜕𝑍𝑖
 value. This tells us how the output of the neuron changes when we apply the 

activation function. This is simply a derivative of the activation function which we described in section 2.4. 

We have now calculated the partial derivative of the bias term of the neuron in the output layer, 

and we can use it to adjust this neuron’s bias. Next, let’s look at the derivatives of weights connecting to 

this neuron, splitting it again like: 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗
=⁡

𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑖
∙

𝜕𝑍𝑖
𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗

 

The term ⁡
𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑖
 is the same error that we calculated before, and the new term 

𝜕𝑍𝑖

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗
 tells us 

how the neuron value without activation function changes when we change that weight. This is a partial 

derivative of (𝑤𝑖𝑗𝑂𝑗 + 𝑏𝑖) wrt. 𝑤𝑖𝑗, which just boils down to the activation of the connected neuron: 

𝜕𝑍𝑖
𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗

=⁡𝑂𝑗  

While these derivatives look intimidating at first, they boil down to a very simple calculation: 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
= (𝑡𝑎𝑟𝑔𝑒𝑡𝑖 −𝑂𝑖) ∙ 𝜎

′(𝑂𝑖) 



𝜕𝑐𝑜𝑠𝑡

𝜕𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗
=

𝜕𝑐𝑜𝑠𝑡

𝜕𝑏𝑖𝑎𝑠𝑖
∙ 𝑂𝑗 

With this knowledge, we can now implement gradient calculation for the output layer: 

// Gradient of bias 
const uint neuronDataIndex = getNeuronDataIndex(LAYER_COUNT - 1, neuron); 

const float neuronActivation = activations[neuronDataIndex]; 
const float dCost_O = (neuronActivation - target[neuron]); 
const float dO_Z = ACTIVATION_FUNCTION_DERIV(neuronActivation); 
const float dCost_Z = dCost_O * dO_Z; 
errors[neuronDataIndex] = dCost_Z; 
InterlockedAdd(gradientBiases[neuronDataIndex], packFloat(dCost_Z)); 
             
// Gradient of weights 
for (uint previousNeuron = 0; previousNeuron < neuronCountPreviousLayer; 
previousNeuron++) 
{ 
    const uint previousNeuronDataIndex = getNeuronDataIndex(LAYER_COUNT - 2, 
previousNeuron); 
    const float dCost_weight = dCost_Z * activations[previousNeuronDataIndex]; 
    const uint weightIndex = getConnectionDataIndex(LAYER_COUNT - 1, previousNeuron, 
neuron); 
    InterlockedAdd(gradientWeights[weightIndex], packFloat(dCost_weight)); 
} 

 What remains is to calculate the same partial derivatives for the hidden layer, which is just slightly 

more complicated. Because the neurons in the hidden layer are connected to other neurons, their 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
 

values are not dependent on the cost function directly, but on the connected neurons. Specifically: 

𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
=∑

𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑗
𝑗

∙
𝜕𝑍𝑗

𝜕𝑂𝑖
 

Where 𝑗 is the j-th neuron connected to the output of evaluated neuron 𝑖, 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑍𝑗
 is the error of the j-th 

neuron evaluated previously, and 
𝜕𝑍𝑗

𝜕𝑂𝑖
 tells us how the output of neuron 𝑗 without activation function 

changes when the output of the evaluated neuron changes. This is a derivative of (𝑤𝑖𝑗𝑂𝑗 + 𝑏𝑖) wrt.⁡𝑂𝑗, so 

simply a strength of the connection between the neurons: 

𝜕𝑍𝑗

𝜕𝑂𝑖
=⁡𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 

The code for hidden layer gradient is almost the same, except for the 
𝜕𝑐𝑜𝑠𝑡

𝜕𝑂𝑖
 calculation, which is: 

float dCost_O = 0.0f; 
for (uint nextNeuron = 0; nextNeuron < neuronCountNextLayer; nextNeuron++) 
{ 
    const uint weightIndex = getConnectionDataIndex(layer + 1, neuron, nextNeuron); 
    const uint nextNeuronDataIndex = getNeuronDataIndex(layer + 1, nextNeuron); 
    dCost_O += (errors[nextNeuronDataIndex] * nnWeights[weightIndex]); 
} 



Notice that in order to implement this, we had to store errors of the previously evaluated neurons. 

We can say that the error is propagating backwards through the neural network, giving this algorithm its 

name – backpropagation. We also need to store activations for all neurons, which was not necessary for 

the forward pass. 

3.6 Training Implementation Details 
 The code sample implements training as described above running on the GPU using Dx12 compute 

shaders. The whole training runs in 2 main kernel dispatches: gradient calculation and optimization. For 

gradient calculation, we run as many threads in parallel as we have training examples in the batch. Each 

thread generates a training example by randomly sampling a reference texture. Then it runs the forward 

pass to evaluate activations for the whole network, followed by the backpropagation pass to calculate the 

gradient. You may have noticed in the previous listings that we use InterlockedAdd operation to store 

the gradient. This is because we are interested in average gradient for all training examples in the batch, 

so we can add them all up and then divide the sum by the batch size before using it. The code for a gradient 

calculation step is: 

// Initialize random numbers generator 
uint rng = initRNG(LaunchIndex, uint2(1, 1), gData.frameNumber); 
     
// Generate a random input (UV coordinates in the image) 
const float2 uvs = float2(rand(rng), rand(rng)); 
 
// Load target value to learn for this input from reference image 
const float3 target = targetTexture[uvs * float2(gData.outputWidth - 1, 
gData.outputHeight - 1)].rgb; 
     
// First run forward pass to evaluate network activations for given input 
float activations[LAYER_COUNT * MAX_NEURONS_PER_LAYER]; 
forwardPass(uvs, activations); 
     
// Run backpropagation on current network state 
backpropagation(target, activations); 

 The next step – optimization – runs once after calculating gradient for every batch, reads the 

gradient and adjusts the weights and biases accordingly. 

3.7 Neural Network Initialization 
There is one important aspect of training we haven’t covered yet and that’s the initial state of the 

network before we start the training. Initial weights and biases influence where our training starts and 

how fast can it approach the optimal solution, so a good initialization strategy is desirable. If we used some 

constant for all initial weights (e.g., zero or one), all activations and their gradients would be the same – 

the network wouldn’t be learning anything as every neuron would follow the same learning path 

(assuming we have a deterministic learning algorithm).  

Because of this, we want to start with different initial weight and bias setting for each neuron to 

“break the symmetry”. Therefore, we initialize the network with some small random numbers centered 

around zero. We can take these numbers, e.g., from the uniform or normal distribution. To do that we 

must pick a range in which to generate random numbers, and in case of normal distribution also the 

standard deviation. These can either be hyperparameters tuned manually, or better, we can use one of the 

common strategies for setting them automatically. Such strategies are, e.g., LeCun uniform, Xavier 



uniform and their variations using normal distribution. These have been introduced in paper 

Understanding the difficulty of training deep feedforward neural networks. 

In our code sample we use the Xavier uniform initialization. It generates weights using a uniform 

random distribution within the range [−𝑥, 𝑥], where 𝑥 is dependent on number of neurons in layers that 

the weight is connecting: 

𝑥 = ⁡√
6

𝑛𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐿𝑎𝑦𝑒𝑟 + 𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑎𝑦𝑒𝑟
 

Random initial values for weights are enough to break the symmetry and ensure proper learning, 

and therefore it is common to initialize biases to zeroes, or some small constant. 

4 Improving the Network – Input Encodings 
So far, we have only used the identity input encoding. Meaning, we have simply passed our UV 

coordinates into two input neurons. In this section we are going to explore a more advanced input 

encoding, the frequency encoding, which greatly improves performance for our sample application. 

4.1 Frequency Input Encoding 
 This encoding was described in the NeRF paper under the name “positional encoding”, but I see 

it’s often referred to as the “frequency encoding”. Idea is to transform the input into higher-dimensional 

space using the following formula: 

𝛾(𝑝) = (sin(20𝜋𝑝) , cos(20𝜋𝑝) ,…⁡sin(2𝐿−1𝜋𝑝) , cos(2𝐿−1𝜋𝑝)) 

where 𝑝 is the input value we want to encode, 𝐿 is the number of frequencies we want to use 

(e.g., 8) and 𝛾 is a vector of encoded values. Note that with this encoding, we have greatly increased 

number of input neurons. For our sample application with 2 input values, and 8 frequencies, we get 32 

input neurons. 

Having inputs in higher-dimensional space will make it easier for neural network to discover more 

complex relationships between inputs and outputs. Implementation of this encoding can be found in the 

sample code in function called frequencyEncoding. 

4.2 Other Input Encodings 
In the deep learning literature, you will often encounter a one-hot encoding. This is a very simple 

encoding where input is encoded into a vector of values, where only a single entry is 1, and others are 0 

(we say that  one value is hot). E.g., we can encode a fact that object belongs to certain category by having 

a vector of values representing each category, and setting value 1 for the selected category, while zeroing 

out others. 

 For more advanced encodings, I recommend looking at the one-blob encoding, introduced in 

Neural Importance Sampling paper, which extends one-hot encoding to have multiple entries activated, 

instead of just one. This essentially activates or shuts down parts of the network, depending on the input 

value. 

Another useful encoding is a hash-grid encoding introduced in Instant Neural Graphics Primitives 

with a Multiresolution Hash Encoding paper. 

https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/2003.08934
https://arxiv.org/pdf/1808.03856
https://tom94.net/data/publications/mueller22instant/mueller22instant.pdf
https://tom94.net/data/publications/mueller22instant/mueller22instant.pdf


5 Improving the Network – Adam Optimizer 
 So far, we have applied gradients during the training using a very simple way – we just multiplied 

it by the learning rate and subtracted it from current weights and biases. While this works, it is not optimal 

for several reasons: fixed learning rate is usually suboptimal at the beginning, when we want to take larger 

steps to proceed faster, but it is also suboptimal at the end, when it can oscillate around the optimal 

solution because the fixed step is too large to get into the valley of local minimum. In practice, we want to 

use an adaptive learning rate instead. 

 In this section we implement an improved optimizer called Adam (adaptive moment estimation), 

described in the paper Adam: A Method for Stochastic Optimization. Adam adds two ingredients to the 

optimization process: adaptive learning rate and momentum.  

 We have described adaptive learning rate before, so let’s now look at the momentum. Remember 

our “ball rolling” example where we stated that minimizing the cost function is like rolling the ball on its 

surface to find a lowest point. Just like in real world, where the ball has certain momentum, we can add 

momentum to our algorithm by taking into consideration the gradients in previous steps and applying a 

weighted average of them, instead of just latest gradients. This way, we progress to the optimum faster 

and we have a higher chance of escaping shallow valleys with local minima to find even lower local 

minimum. 

5.1 Adam Implementation 
 Adam optimizer works by tracking the first and second moments (mean and variance) of the 

gradient. This means that for each weight and bias, we have to track mean and variance of their partial 

derivatives. They are averaged over time and their decay is controlled by new hyperparameters 𝛽1and 𝛽2. 

The adjustment done to weight or bias is calculated using its gradient, mean, and variance in the following 

way: 

// Update mean and variance for this training step 
mean = lerp(gradient, mean, gData.adamBeta1); 
variance = lerp((gradient * gradient), variance, gData.adamBeta2); 
     
// Calculate weight (or bias) adjustment 
const float correctedMean = mean / (1.0f - gData.adamBeta1T); 
const float correctedVariance = variance / (1.0f - gData.adamBeta2T); 
const float weightAdjustment = -gData.learningRate * (correctedMean / 
(sqrt(correctedVariance) + gData.adamEpsilon)); 

The updated mean and variance are stored next to weights and biases. Note that we still have to 

set a base learning rate when using this algorithm, the paper suggests a value of 0.001. In practice, the 

default values suggested in the paper for 𝛽1 = ⁡0.9⁡and 𝛽2 = 0.999 are used as well. The default value for 

𝜀 which prevents division by zero is 10−8. Values 𝛽1
𝑇 and 𝛽2

𝑇are derived from 𝛽1and 𝛽2⁡ and adjusted after 

each training step as follows: 

adamBeta1T = pow(adamBeta1, training_steps + 1); 
adamBeta2T = pow(adamBeta2, training_steps + 1); 

6 Problems with Training 
While the method for training described so far is fairly robust and efficient, there are several 

problems which we can encounter in practice, let’s briefly discuss some of them: 

https://arxiv.org/pdf/1412.6980


o Insufficient training data: when we have low amount of training data, or when the batch size 

of stochastic gradient descent is too low, we won’t be able to find a stable solution that 

generalizes well. Make sure to have sufficient data to get into local minimum of the cost 

function. 

o Non-deterministic data: So far, we assumed that there is a deterministic relationship 

between the training inputs and target outputs. Breaking this assumption by having some 

random values can make it hard or impossible for training to converge. 

o Wrong learning rate: Having a learning rate too small will cause the training to proceed very 

slowly, while having it too large can make the training unstable. 

o Vanishing gradients: For deep networks, gradients in certain layers can become very small, 

slowing down or even stopping the training. This happens because for typical activation 

functions, large changes on some inputs can only cause small changes (or no changes) of the 

output. E.g., the negative part of the leaky ReLU outputs very small values. In this case, partial 

derivatives become smaller and smaller, and training doesn’t change the weights much. One 

of the possible solutions is to use different activation functions. 

o Exploding gradients: The opposite problem happens when gradients get very large and cause 

instability. As a solution, we can clamp gradients to some threshold value, limiting the rate at 

which they can change weights and biases – this is called the gradient clipping. 

7 Next Topics 
There is a lot more to deep learning than what I described so far in this article. Before we wrap 

up, I want to mention at least two topics worth studying next, that you will encounter often when reading 

deep learning papers focused on computer graphics: auto-encoders and convolutional networks. 

Auto-encoder is a type of neural network consisting of encoder and a decoder. Encoder translates 

input data into more compact representation (in latent space) and decoder is used to decompress it to 

original representation. It can be used for applications like data compression, denoising and image 

reconstruction. 

Convolutional networks (CNNs) are specialized networks used mostly in image processing. They 

contain 2 types of hidden layers: convolutional layers intended to detect certain features in images, and 

pooling layers which downsample intermediate results into more compact representation. 

While I was first learning about deep learning, I found great insight in the paper titled “Multilayer 

Feedforward Networks are Universal Approximators” from 1989. It says that MLPs with at least one hidden 

layer are universal approximators, meaning they can approximate any function to a degree allowed by 

the network capacity. It also says that failure to approximate given function can be attributed to 

inadequate learning, insufficient network capacity, or non-deterministic relation between network inputs 

and outputs. In practice, we can therefore use MLPs to replace parts of our algorithms which contain 

difficult functions mapping data from one space to another. 

8 Conclusion 
In this article, I have described a few concepts and algorithms used in deep learning that I found 

most interesting for my use case (representing an image using an MLP), but there is much more to explore. 

With the knowledge provided here, I hope that you’ll have more fun reading deep learning papers and 

resources and implement your own deep learning ideas.  

https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf
https://www.cs.cmu.edu/~epxing/Class/10715/reading/Kornick_et_al.pdf


I recommend looking at the book Deep Learning: A Visual Approach by Glassner, the book Deep 

Learning by Goodfellow et al. which is freely available online, deep learning videos by 3Blue1Brown, neural 

network blogs by demofox, paper titled “Deep learning” by LeCun et al. from 2015, and graphics papers 

such as NeRF and NRC. When implementing neural networks, I recommend reading an article How to 

accelerate AI applications on RDNA 3 using WMMA for insights how to use AI accelerating instructions of 

current GPUs. Finally, I recommend experimenting with libraries like pyTorch which enable much faster 

prototyping, than implementing everything from scratch. 

I want to thank Daniel Meister for helpful comments and suggestions. 

https://www.glassner.com/portfolio/deep-learning-a-visual-approach/
https://www.deeplearningbook.org/
https://www.youtube.com/@3blue1brown
https://blog.demofox.org/2017/03/09/how-to-train-neural-networks-with-backpropagation/
https://www.researchgate.net/publication/277411157_Deep_Learning
https://arxiv.org/pdf/2003.08934
https://d1qx31qr3h6wln.cloudfront.net/publications/mueller21realtime.pdf
https://gpuopen.com/learn/wmma_on_rdna3/
https://gpuopen.com/learn/wmma_on_rdna3/
https://pytorch.org/

