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Figure 1: Bathroom scene (top) rendered with neural radiance caching (NRC) and Bistro-Exterior (bottom) rendered with neural ambient
occlusion (NAO) after 1024 (NRC) and 128 (NAO) training steps using multi-dimensional hash-grid encoding [MESK22] (left), our GATE
method (middle), and ground truth (right). GATE provides faster training (up to 3.7×) and inference times (up to 2.7×) and at the same time
achieves higher quality (lower error vs. ground truth), especially for teapot-in-the-stadium scenarios (e.g., Vespa in Bistro).

Abstract
The encoding of input parameters is one of the fundamental building blocks of neural network algorithms. Its goal is to map the
input data to a higher-dimensional space [RBA∗19], typically supported by trained feature vectors [MESK22]. The mapping is
crucial for the efficiency and approximation quality of neural networks. We propose a novel geometry-aware encoding called
GATE that stores feature vectors on the surface of triangular meshes. Our encoding is suitable for neural rendering-related al-
gorithms, for example, neural radiance caching [MRNK21]. It also avoids limitations of previous hash-based encoding schemes,
such as hash collisions, selection of resolution versus scene size, and divergent memory access. Our approach decouples feature
vector density from geometry density using mesh colors [YKH10], while allowing for finer control over neural network training
and adaptive level-of-detail.

1. Introduction

Deep learning has become ubiquitous in many industrial and
research areas. In computer graphics, the multilayer perceptron
(MLP), one of the simplest models, has proven to be a powerful
tool capable of approximating various complex phenomena (e.g.,
global illumination [MRNK21, DKHD25] or geometry representa-
tion [TLY∗21]) with appropriate input encoding. Compared to ad-
vanced models, the advantage is that MLPs can be trained online
in several milliseconds on modern GPUs [MRNK21, DKHD25].

Input encoding proved to be a crucial component for capturing
high-frequency signals from low-dimensional inputs [RBA∗19].
The principle is to map low-dimensional signals to a higher-
dimensional space to help MLPs capture the high-frequency de-
tails. Various encoding strategies have been proposed; among oth-
ers, those with learnable parameters became popular [MESK22].
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In this paper, we present a novel positional encoding† to store
quantities on triangular meshes in the context of ray tracing-based
rendering. We exploit the fact that the rays originate from triangle
surfaces (except camera rays), hence we store the feature vectors
directly on triangles and use barycentric coordinates for interpo-
lation. A positive side effect of using barycentric interpolation is
that the input is implicitly normalized, which otherwise needs to be
done manually (based on scene bounds). Our approach also adapts
to the geometry of the scene, efficiently dealing with the teapot-
in-a-stadium problem (i.e., a detailed object inside a large scene)
compared to uniform grid-based approaches [MESK22]. Our con-
tributions include:

• A novel positional encoding method for triangular meshes with
trainable parameters that allows real-time online training.

• An adaptive algorithm distributing feature vectors on triangles
according to the sizes of triangles.

• A distribution scheme for training samples that limits training to
a subset of triangles.

• Application of our encoding in two rendering scenarios: neural
ambient occlusion and neural radiance caching.

2. Previous Work

Computer graphics typically deals with low-dimensional data (e.g.,
3D positions, normal vectors, or RGB colors) compared to high-
dimensional data for computer vision or natural language process-
ing (e.g., images, words, or sentences). Feeding such input directly
to an MLP blurs out the high-frequency details. Therefore, vari-
ous encoding methods which map low-dimensional input to a high-
dimensional space have been proposed to help MLPs representing
high-frequency details.

One-hot encoding, one of the first encoding techniques, divides
the range of input values into a predefined number of bins, where
each bin corresponds to a single output dimension. The bin in
which an input value falls is set to one while the other dimensions
remain zero. A drawback is that different values assigned to the
same bin are mapped to the same value. Müller et al. [MMR∗19]
generalized one-hot encoding into one-blob encoding. The idea is
to center a Gaussian kernel around the input value and dice the
Gaussian into bins, where the value of each bin is obtained by inte-
gration over the corresponding Gaussian segment. In practice, the
Gaussian kernel can be replaced with a quartic kernel for higher
performance [MRNK21].

Frequency encoding [VSP∗17, MST∗20] represents an input
value as a sequence of sines and cosines, where the input is mul-
tiplied by 2i−1

π for i-th frequency and fed to the sine and co-
sine functions. The number of frequencies is a hyperparameter and
should be set according to the highest frequency of the captured
input data.

Parametric encodings combine traditional data structures and
neural networks. The concept is to store additional learnable pa-
rameters (i.e., latent feature vectors) in a data structure spanning

† Throughout the paper, we use the term positional encoding for the en-
coding of positions and frequency encoding for positional encoding based
on frequencies [VSP∗17, MST∗20].

across the input domain, where the feature vectors are optimized
by stochastic gradient descent together with the network weights.
An input value, before it is fed to a neural network, is encoded by
interpolating the feature vectors in the proximity of the input value.
Most of the learnable parameters are now stored in the data struc-
ture, and the neural networks serves only as a lightweight decoder.

Octrees [TLY∗21, MLL∗21] and uniform grids with single or
multiple levels [HCZ21, KMX∗21, TET∗22, WZK∗23] are widely
used to store feature vectors. The input data are encoded by tri-
linearly interpolated feature vectors in the grid/octree cell’s cor-
ners. In the case of multiple levels, the feature vectors from the
individual levels are concatenated. The memory footprint of grid-
based data structures might be very large. Müller et al. [MESK22]
proposed to represent a multi-resolution grid in a hash table, sig-
nificantly reducing memory requirements, and similarly, Takikawa
et al. [TLY∗21] proposed to represent feature vectors as a sparse
voxel octree. Also, Takikawa et al. [TMND∗23] combined multi-
resolution hash-grid encoding with a pair of codebooks, while
Govindarajan et al. [GSS∗24] used Gaussian interpolation to re-
duce the size of the hash table. Fujieda et al. [FYH23] proposed
applying frequency encoding on top of grid-based encoding such
that the sines and cosines are multiplied by the coefficients of the
interpolated feature vector.

The encodings discussed so far assume normalized uniformly
distributed data of arbitrary dimension (in theory). Sivaram et
al. [SLR24] proposed an encoding customized to represent 3D
meshes. The mesh is decomposed into coarse quadrangular
patches, where each patch stores four feature vectors in the corners.
Encoded data are obtained by bi-linearly interpolating the feature
vectors of a given patch. The interpolated point within the patch
is also fed into the frequency encoding and concatenated with the
interpolated feature vector. The feature vectors are trained to repre-
sent displacements for points on the patches. Thies et al. [TZN19]
proposed a deferred neural rendering framework that stores latent
feature vectors as textures mapped on imperfect models recon-
structed by photometric methods. The neural renderer is trained
together with feature vectors to match photorealistic target images.
Similarly to these approaches, our method naturally adapts to the
geometry of the scene, unlike general encodings. We store feature
vectors directly on the triangular meshes, using (implicitly normal-
ized) barycentric coordinates for interpolation. We train an MLP
and the feature vectors to represent various photometric quantities
(e.g., radiance or ambient occlusion) computed by a physically-
based renderer in contrast to the neural renderer [TZN19] or the
displacement [SLR24].

Neural methods for compressing textures [FH24, VSW∗23] and
representing materials [KMX∗21,ZRW∗24] use encodings tailored
for their input domains (e.g., the multi-resolution 2D grid or a hi-
erarchical texture). These methods are aimed at offline training and
generally do not support algorithms operating in 3D space, such as
the online-trained neural radiance cache.

3. Geometry-Aware Trained Encoding (GATE)

In this section, we present our geometry-aware trained encoding
(GATE), a parametric positional encoding for points located on tri-
angular meshes, storing latent feature vectors directly on triangles,
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Figure 2: An overview of our method. Latent feature vectors
are evenly distributed on triangles using mesh colors [YKH10]
with resolution R. We find a virtual triangle formed by vertices
(vi,v j,vk) where the input point x belongs to. We use barycentric
coordinates within this virtual triangle (wi,w j,wk) to interpolate
of three feature vectors (zi,z j,zk) associated with the vertices to
get the encoded vector z = (z1, . . . ,zL), which is subsequently fed
to an MLP.

such that each input point is uniquely specified by the triangle ID,
mesh ID, and barycentric coordinates with respect to a given tri-
angle. To infer the feature vector of a point, we locate the three
closest feature vectors distributed on the surface of given triangle
with mesh colors using barycentric coordinates, and then interpo-
late them (see Section 3.1). The length of a feature vector L is a
hyperparameter (typically between 1 and 8). All feature vectors are
learnable parameters and optimized through backpropagation. An
overview of the GATE method is illustrated in Figure 2.

Compared to other competing methods based on grids and/or
hashing, our GATE approach has several advantages. Optimizing
the training loss will result in feature vectors optimized specifically
for every given triangle. This is in contrast to grid-based methods,
where feature vectors are stored in the corners of a cell and tri-
linearly interpolated to encode arbitrary positions inside the cell
(i.e., surface vs. volume). The locations of feature vectors in our
approach naturally adapt to the scene geometry, and we also do not
need to explicitly normalize the input values (e.g., the world-space
position normalized to the scene bounds) due to interpolation based
on barycentric coordinates. Since feature vectors are stored consec-
utively in memory, our approach has a more cache-friendly mem-
ory access pattern with no hashing collisions unlike hash-based grid
methods. For those grid-based methods, feature vectors belonging
to the same cell are scattered in memory and collisions may occur.

3.1. Distribution of Latent Feature Vectors

We employ mesh colors [YKH10] to distribute latent feature vec-
tors across the surface of triangles. The original algorithm was
designed to extend vertex colors, where additional colors are dis-
tributed on edges and faces based on a triangle given resolution R,
which is a hyperparameter (R = 1 corresponds to when the fea-
ture vectors are stored only in the triangle vertices). We employ the
same algorithm to distribute feature vectors across a triangle. The
idea is to virtually tessellate a given triangle into smaller triangles
such that feature vectors are stored at the vertices of virtual trian-
gles. The total number of feature vectors per triangle (including
edges and vertices) is (R+1)(R+2)

2 .

Inferring the feature vector of an input point, we need to fetch

the three closest feature vectors (with respect to the virtual trian-
gle) and use the barycentric coordinates (with respect to the virtual
triangle) for interpolation. For a virtual triangle formed by vertices
(vi,v j,vk), the latent feature vectors are interpolated by:

z = wizi +w jz j +wkzk, (1)

where wt are barycentric weights and zt are feature vectors (associ-
ated with vertex vt ) and z is the resulting feature vector. The indices
of the closest three feature vectors and the barycentric weights (co-
ordinates) within the virtual triangle are provided by mesh colors,
based on the integral part and fractional parts, respectively, of the
barycentric coordinates scaled by R (see details in [YKH10]).

In addition to the feature vectors at the original vertices, mesh
colors create additional feature vectors within a triangle and on its
edges. We use information from the mesh’s index buffer to share
feature vectors at vertices and on the edges of neighboring trian-
gles. This ensures seamless encoding at shared triangle edges of
a mesh, assuming a fixed R per mesh. With a fixed R per mesh,
our implementation stores (R+1)(R+2)

2 feature vectors per triangle
consecutively in memory.

Given a triangle index and barycentric coordinates of a point on
the triangle, obtaining the final interpolated feature vector involves
multiple steps. First, we compute the start offset of the vertex, edge,
and surface feature vectors for the given triangle and mesh. This
offset points into a large continuous buffer that holds all feature
vectors. These offsets are pre-calculated and stored into an auxil-
iary buffer for the first triangle of each mesh. Because we use a
fixed mesh colors resolution R for every mesh, there is the same
amount of feature vectors for every triangle per mesh. The offset
where the feature vectors start for a given triangle can be calcu-
lated as InstanceO f f set +TriangleID ·FeatureVectorsPerTriangle.
Second, given the barycentric coordinates of the base triangle, the
three closet vertices and barycentric weights of the virtual triangle
are provided by mesh colors. The feature vectors of the three closest
vertices are loaded from the feature vector buffer and interpolated
using the barycentric weights as shown in Equation 1, resulting in
the final (encoded) feature vector. Note that in case of double-sided
triangles, feature vectors need to be stored for each side separately.

The per-triangle resolution R can be set to achieve a uniform
density of feature vectors (in world-space) throughout the scene,
regardless of individual triangle sizes. This allows for increasing
the feature vector resolution in areas of high interest (e.g., close to
the camera position, within a viewing frustum, or in areas of high
path tracing sample density). To avoid inconsistencies on edges, we
opt to set R per mesh (or instance in the case of instancing) based on
triangle area (in world space), with larger triangles assigned higher
resolutions. We compute the average normalized triangle area AI
of mesh/instance I. Then, the adaptive triangle resolution RI is
given as the following clamped quadratic function:

RI = clamp(32 ·AI
2 ·Rscale,1,32), (2)

where Rscale is a scene-specific parameter for fine-tuning the
density of mesh colors. Similarly to grid-based approaches that use
multiple resolutions, GATE can hierarchically stack multiple res-
olutions provided by mesh colors (see Figure 3). The interpolated
feature vectors from different resolutions are then concatenated and
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Figure 3: An example of mesh colors [YKH10] that we use to dis-
tribute feature vectors on triangles using different resolutions. The
feature vectors from multiple resolutions can be concatenated to
improve the approximation quality.

fed to the MLP in a similar manner as for multi-resolutions hash-
grids, where the number of resolutions is a hyperparameter.

3.2. Training

We train the feature vectors together with the MLP using back-
propagation. First, all feature vectors are initialized to random
values centered around zero with magnitude up to 10−4 (similar
to [MESK22]). During backpropagation, we calculate the partial
derivative of each feature vector element (gradient) with respect to
a training loss L:

∂L
∂zt

=
∂L
∂z

∂z
zt

= wt
∂L
∂z

. (3)

Using these gradients, the feature vectors are optimized with the
Adam optimizer [KB14].

A typical GPU implementation of the gradient descent-based op-
timization distributes the learnable parameters (i.e., weights or fea-
ture vectors) uniformly among GPU threads, updating all the pa-
rameters. This would be rather inefficient for our GATE encoding,
since there is a potentially very large number of triangles and their
feature vectors, while only a small fraction of them are trained in a
single step. Instead, we modify backpropagation to create a record
for every feature vector that was updated in a dedicated buffer. The
buffer size is chosen to support the maximum training batch size,
and an atomic counter keeps track of the number of records actually
created. The optimization phase (Adam) reads this buffer and only
updates the feature vectors for which the gradient was calculated.

Another observation is that when training GATE on noisy data,
such as radiance, it pays off to reduce input noise to a minimum for
more stable results and to learn high-frequency details faster. When
training samples are generated, it is more efficient to use a smaller
number of triangles with more samples, instead of a larger number
of triangles with fewer samples. In this way, the available training
budget is used more effectively.

3.2.1. Per-Triangle Learning Rate

An advantage of GATE is the link between triangles and feature
vectors. The link allows for a per-triangle learning rate, which is
in contrast to grid-based approaches, where multiple triangles may
occupy the same grid cell or a single triangle spans multiple grid
cells. For efficient training, we maintain a per-triangle buffer that

Bistro (Ext) Bistro (Int) Bathroom Kitchen
#Triangles 2837K 1020K 39K 610K

Neural Ambient Occlusion (NAO)

Training [ms]
GATE (ours) 0.45 0.38 0.38 0.40
Hash-Grid 25.32 3.41 1.25 2.40
Speedup 56.27× 8.97× 3.29× 6.0×

Inference [ms]
GATE (ours) 0.70 0.70 0.66 0.70
Hash-Grid 2.05 1.91 1.65 1.92
Speedup 2.93× 2.73× 2.5× 2.74×

Memory Consumption [MB]
GATE (ours) 177.09 16.00 0.67 9.92
Hash-Grid 189.59 17.55 0.66 9.37

Ratio (G/H) 1.07 1.10 1.02 0.95
FLIP Error

GATE (ours) 0.040 0.038 0.021 0.033
Hash-Grid 0.065 0.041 0.021 0.034

Ratio (G/H) 0.62 0.95 1.00 0.98

Neural Radiance Caching (NRC)

Training [ms]
GATE (ours) 1.43 1.37 1.45 1.41
Hash-Grid 41.56 6.97 1.86 4.87
Speedup 29.06× 5.09× 1.28× 3.45×

Inference [ms]
GATE (ours) 1.25 1.24 0.88 0.91
Hash-Grid 2.53 2.11 1.76 1.83
Speedup 2.02× 1.7× 2.00× 2.01×

Memory Consumption [MB]
GATE (ours) 365.46 50.00 2.47 29.76
Hash-Grid 328.85 46.22 2.45 29.84

Ratio (G/H) 1.11 1.04 1.00 1.00
FLIP Error

GATE (ours) 0.323 0.854 0.414 0.333
Hash-Grid 0.382 0.985 0.409 0.348

Ratio (G/H) 0.84 0.86 1.01 0.95
Table 1: Timings for NAO (top) / NRC (bottom) training and in-
ference times per frame, and the FLIP error metric [ANA21] (128
training iterations) using a variable number of feature vectors per
triangle (fixed per mesh). Size of the hash-grid is chosen so that
both approaches consume a comparable amount of memory. GATE
outperforms hash-grid in terms of training and inference perfor-
mance, while at the same time providing higher quality (equal or
lower FLIP error). Note that for hash-grid training we follow the
reference implementation [MESK22] which trains every feature
vector in the grid. This leads to a significant increase in training
time for larger scenes. For a comparison to smaller hash-grid sizes
see Table 2.

stores the number of training steps tT applied to triangle T . Us-
ing this information, we can fine-tune the training routine in the
following ways.

First, we use a per-triangle learning rate for the Adam optimizer,
where instead of a global number of training steps, we use per-
triangle tT for the Adam parameters β

tT
1 and β

tT
2 . We expect only a
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Figure 4: Neural ambient occlusion (NAO). Image quality after 128 training iterations: hash-grid (left), GATE (middle), and ground truth
(right). Size of hash-grid < 1MB. GATE provides higher image quality (lower FLIP error) than hash-grid, in particular for the two larger
scenes.
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Figure 5: Neural radiance caching (NRC). Image quality after 1024 training iterations: hash-grid (left), GATE (middle), and ground truth
(right). Size of hash-grid < 1 MB. GATE is able to match or exceed the image quality of hash-grid, except for the Kitchen scene. Even though
GATE has a FLIP higher error, it preserves sharp edges and fine details (e.g., Kitchen scene).

fraction of triangles to be trained in a single step. Adjusting the pa-
rameters β

t
1 and β

t
2 only by the number of previous global training

iterations would slow down the training of all triangles equally over
time, even for those not actually trained. Our modification of track-
ing the number of training steps per triangle, allows for adjusting

the Adam parameters per training step, which ensures a consistent
training quality and speed for all triangles.

Second, we can generate training data taking into account which
triangles have been trained before and how many times. When
generating training sample positions, we prioritize triangles with
a smaller training count to quickly distribute more samples to un-
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trained areas. Specifically, we randomly generate M (e.g., M = 16)
samples xT1 , . . . ,xTM on triangles T1, . . . ,TM , such that we select
candidate xTi the following probability:

PTi =
w(xTi)

∑
M
j=1 w(xT j )

, (4)

where w(x) is a weight of sample x. To prioritize triangles with
fewer training steps, we define the weights as w(xTi) =

1
min(512,tTi )

.
To correctly calculate tTi , we maintain an atomic counter per tri-
angle. This counter is incremented each time a training sample
is assigned. We also need to make sure to increment the counter
only once per training iteration, even when multiple samples are
assigned to the same triangle. Therefore, we track when Ti was
trained the last time and only increment tTi if it has not been modi-
fied in the current iteration.

4. Results and Discussion

For our evaluation, we implemented a minimal MLP framework,
written in DirectX 12 and HLSL, to compare GATE to multi-
resolution hash-grid encoding [MESK22]. We use an MLP com-
posed of 2 hidden layers with 32 neurons in each layer, using a
leaky rectified linear unit (ReLU) as the activation function, with a
negative slope of 0.01. In our tests, GATE uses two mesh colors res-
olutions hierarchically: a resolution RI calculated adaptively and
one with fixed R= 1. The hash-grid uses 8 levels with 4 features per
level and a base resolution of 2. All experiments were conducted on
an AMD Radeon 9070 XT (RDNA 4) GPU, running Windows 10
as the operating system. We use the FLIP error [ANA21] as an im-
age quality metric.

We implemented two neural rendering algorithms on top of our
MLP framework: neural ambient occlusion (NAO) and neural ra-
diance caching (NRC) [MRNK21]. The implementation of both
algorithms encodes a 3D position and feeds the result to the MLP.
For NRC, both encoding methods use the view direction as input, as
the radiance is view-dependent. For the hash-grid, we use surface
normal and albedo as additional input. In the case of GATE, normal
and albedo attributes are inherent to the triangles and are therefore
omitted. Both view directions and normal are encoded by the one-
blob encoding using spherical coordinates [MMR∗19, MRNK21].
To visualize the approximate radiance field, we evaluate NRC on
primary hit points and also remove color data from primary hits to
emphasize global illumination effects. The length of training paths
is 4. Both NAO and NRC use 49152 training samples, performing
one training iteration per frame. GATE employs the per-triangle
learning rate (see Section 3.2.1). We use the L2 loss function, and
the batch size is equal to the number of training samples. The fea-
ture vectors for both GATE and hash-grid are stored as single pre-
cision floating point values (FP32), using 2 (NAO) and 8 (NRC)
features at each resolution. For GATE using 2 stacked resolutions,
this leads to 2L number of neurons in the input layer, where L is the
length of the feature vector, resulting in 4 input neurons for NAO,
and 16 for NRC. Note that the MLP inference in our implemen-
tation is not limited to primary hits but can be done at any stage
in the shader code, including at deeper bounces. All images were
rendered at a resolution of 1920×1080.

In the context of real-time applications, our goal is to support

continuous training over multiple frames. Figure 4 (NAO) and
Figure 5 (NRC) visualize the quality difference for four example
scenes with varying complexity after 128 (NAO) and 1024 (NRC)
training steps. For all example scenes, GATE is able to deliver a
higher image quality (lower FLIP error) compared to hash-grid-
based encoding. The higher quality is due to the feature vector den-
sity being aligned to the actual geometry, while a hash-grid dis-
tributes the feature vectors evenly over the volume of the scene.
If a part of the scene needs a high feature vector density on spe-
cific parts of the geometry (the teapot-in-the-stadium problem), a
distribution over the scene volume does not provide enough reso-
lution. GATE, on the other hand, is able to adapt to varying density
requirements on the actual geometry. Figure 6 shows how quickly
the neural network learns with increasing number of training steps.
The images are rendered using one sample per pixel. Since the neu-
ral rendering algorithms operate in world-space (i.e., encoding 3D
positions), they amortize multiple training steps through multiple
frames. Our experiment with a fixed view represents the ideal case
of perfect temporal coherence. This does not prevent our method
to be used for dynamic content, as it adapts to changes thanks to
continuous online training.

Table 1 compares training and inference times, when giving both
hash-grid and GATE a comparable memory budget, and using same
training data of equal size. GATE achieves a significant speedup for
both training and inference over hash-grids. The speedup for train-
ing increases with increasing model complexity, as for hash-grid
encoding every feature vector needs to be trained (we follow the
reference implementation [MESK22]). GATE, on the other hand,
only needs to train a subset of feature vectors, which provides a
significant cost advantage. The inference speedup of 1.7− 3× is
mainly due to GATE offering simpler and more efficient access to
feature vectors, e.g., by providing a more cache-friendly memory
access pattern, as it stores feature vectors in a linear buffer that pre-
serves locality. In contrast, the hash-grid’s hashing function causes
frequent incoherent memory accesses, as neighboring input values
are mapped to vastly different output values.

Table 2 compares the performance of training and inference with
reduced hash-grid sizes. Even with smaller hash-grids, GATE is
able to provide superior training and inference performance. Note
that smaller hash-grids sizes also reduce image quality (higher
FLIP error). GATE provides image quality similar to or greater than
any hash-grid size.

4.1. Ablation Study

Figure 7 illustrates the advantage of supporting an adaptive resolu-
tion per triangle when dealing with an extreme variation in triangle
sizes. In this case, applying a fixed resolution to all triangles does
not provide enough density on large triangles while at the same
time assigning an unnecessarily high density to small triangles. An
adaptive per-triangle resolution fixes the density issue, which leads
to significantly reduced memory requirements.

For neural radiance caching, hash-grids require additional in-
puts such as normal and albedo to achieve sufficient quality when
trained, which is not the case for GATE. Figure 8 illustrates for
GATE that these inputs do not impact convergence speed and im-
age quality, given a fixed set of training iterations.
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Figure 6: A comparison of the multi-resolution hash-grid encoding (top) and our GATE (bottom) for the Bistro (Ext) scene rendered with the
neural ambient occlusion (NAO) with 1 sample per pixel, showing how the FLIP error decreases with an increasing number of training steps
(up to 128 training steps). GATE benefits from an increased number of training steps, while hash-grid encoding shows only small quality
improvements.

Mem. Training Inference FLIP
[MB] [ms] [ms]

NAO

GATE (ours) 177.09 0.45 (1.0×) 0.70 (1.0×) 0.040
Hash-Grid (L) 189.89 25.30 (56.2×) 2.05 (2.9×) 0.065
Hash-Grid (M) 83.09 11.66 (25.9×) 2.02 (2.9×) 0.074
Hash-Grid (S) 0.91 1.66 (3.7×) 1.92 (2.7×) 0.122

NRC

GATE (ours) 365.56 1.43 (1.0×) 1.23 (1.0×) 0.403
Hash-Grid (L) 328.85 41.54 (29.0×) 2.53 (2.1×) 0.407
Hash-Grid (M) 132.24 17.63 (12.3×) 2.54 (2.1×) 0.465
Hash-Grid (S) 0.91 1.98 (1.4×) 2.03 (1.7×) 0.461

Table 2: Quality, training and inference times of varying hash-grid
sizes compared to GATE for the Bistro Exterior scene. (L) com-
parable memory budget to GATE, (M) medium size, (S) small size,
below 1 MB. For all hash-grid sizes, GATE is able to provide higher
training (up to 56.2×) and inference (up to 2.9×) performance and
lower FLIP error.

5. Conclusion and Future Work

We presented GATE, a positional encoding tailored for triangular
meshes, storing latent feature vectors directly on the triangles. We
demonstrated that our method can achieve reconstruction quality
higher than multi-resolution hash-grid encoding given a compara-
ble memory budget, while at the same time providing significantly
higher training (up to 3.7×) and inference (up to 2.7×) perfor-
mance against a small sized (< 1 MB) hash-grid. GATE also does
not require information about scene bounds and effectively handles
the teapot-in-the-stadium problem.

R = 4 Adaptive R

75 MB 20 MB
Figure 7: A comparison of GATE with a fixed resolution (left) and
the adaptive one (right) in the Kitchen scene. Voronoi diagram
(bottom) visualizes the closest feature vector location, using the
same color for points belonging to the same feature vector. No-
tice how the adaptive version tessellates the large triangles more
than smaller ones, achieving a similar quality with significantly less
memory usage.

There are a couple of interesting directions for future work. Mesh
colors can adaptively increase the number of feature vectors on
large triangles; however, it is not possible to share feature vec-
tors among multiple (possibly disconnected) triangles, which might
pose an issue for finely tessellated meshes with many tiny triangles,
introducing significant memory overhead. This problem could be
addressed by clustering algorithms. Here, a cluster of locally ad-
jacent triangles could be gathered, which use coarser feature vec-

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.



8 of 9 Jakub Bokšanský & Daniel Meister & Carsten Benthin / GATE: Geometry-Aware Trained Encoding

Figure 8: A comparison of NRC + GATE after 1024 training it-
erations with (left) and without (right) additional G-Buffer inputs
such as normal and albedo. Compared to hash-grids, GATE does
not benefit from these two additional inputs. With additional inputs,
the neural network using GATE requires more training iterations to
achieve same quality as without them, as the signal is more com-
plex to learn, but the final quality is not improved. This behavior
is different than for the hash-grid, where additional inputs improve
quality, however, still requiring more training iterations to achieve
it.

tor resolution compared to the given tessellation. Additionally, we
would like to further enhance the heuristic for setting the adaptive
resolution based on triangle area, possibly combining it with other
metrics such as distance from the camera position.

We also demonstrated that the use of multiple hierarchically
stacked mesh colors resolutions can reduce errors and visual ar-
tifacts. Currently, the number of resolutions is a hyperparameter,
but the number of resolutions could be adaptively selected simi-
larly to the resolution itself (which might be difficult for grid-based
approaches). Furthermore, early tests indicate that feature vectors
could be stored with reduced precision without a visible loss of
image quality, for example, using FP16 instead of FP32, thereby
halving the memory requirements.

Another possible direction would be to completely replace mesh
colors by different mesh parametrization (e.g., the methods used
in texture mapping [YLT19], or Ptex [BL08]) to tackle drawbacks
of mesh colors. Mesh colors are easy to implement and work well
for meshes with near-equilateral triangles of similar sizes, but they
do not handle elongated triangles well, leading to either over- or
under-sampling. Over-sampling case requires more training and
under-sampling case cannot represent high-frequency details. With
the industry moving towards meshes represented by micro-triangles
(e.g., Nanite), this problem can become less important, especially
when we apply clustering of nearby triangles mentioned above.

Finally, we would like to explore the possibility of pre-training.
If we think about the MLP part as a decoder from the space of
latent feature vectors into output representation, then we can theo-
retically pre-train the decoder for given application and only update
feature vectors during the runtime. Such pre-training can be bene-
ficial for several reasons. Consider an algorithm where we generate
training samples corresponding to the camera view. Abrupt visibil-
ity changes, such as teleportation of the viewer or passing through a
wall, can suddenly cause a situation when most feature vectors used
for training are untrained and random. This will cause re-training
of the MLP to the new situation, changing the decoder that was
trained for feature vectors in the previous view. Going back will
again cause the same situation and another re-training.
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