Neural Visibility Cache for Real-Time Light Sampling

Jakub BokSansky

and Daniel Meister

Advanced Micro Devices, Inc.

ReSTIR

FLIPO362 5 >
e 7 FA TS
Figure 1: Rendering of the kitchen scene with 32 lights usin

27T

| FLIP0.08 |
7/4

|
ral

screen-space ReSTIR (left) at 36/1 Zs per frame, compared to oltr neu
light sampling method (center left) running at 3.95 ms, our neural direct illumination (Neural DI) (center right) at 4.41 ms, and ground
truth (right). Compared to screen-space ReSTIR, our neural light sampling produces less noise (especially in occluded areas), reducing the
FLIP error metric [ANA21]. Additionally, we can use the neural network to compute approximate direct lighting without the necessity to cast
shadow rays, except for the rays needed for neural network training.

Abstract

Direct illumination with many lights is an inherent component of physically-based rendering, remaining challenging, especially
in real-time scenarios. We propose an online-trained neural cache that stores visibility between lights and 3D positions. We
feed light visibility to weighted reservoir sampling (WRS) [Cha82, Wym21] to sample a light source. The cache is implemented
as a fully-fused multilayer perceptron (MLP) [MRNK21] with multi-resolution hash-grid encoding [MESK22], enabling online
training and efficient inference on modern GPUs in real-time frame rates. The cache can be seamlessly integrated into exist-
ing rendering frameworks and can be used in combination with other real-time techniques such as spatiotemporal reservoir

sampling (ReSTIR) [BWP*20].

1. Introduction

Direct illumination has a significant impact on both the quality of
rendered images and the rendering performance. The reflected ra-
diance due to direct illumination at point x in direction ®, can be
described as an integral over all light emitting surfaces A:

Lx,@0) = [£(%.0xry.@0) Lol 035 Gx.3)V (x,)A(Y).
A

M
where f; is bidirectional reflectance function (BRDF), L. is emitted
radiance, Wx—sy is a unit direction pointing from point x to y, G is
the geometry term including cosine terms and the squared distance,
and V is the visibility function indicating binary visibility between
two points.

We solve the equation above by means of Monte Carlo integra-
tion as there is no general analytic solution. As with any method
based on Monte Carlo integration, the challenging part is to find a
probability density function that closely matches the desired distri-
bution. To tackle this problem, we train a neural network to provide

estimates of visibility between light sources and 3D positions that
we use to guide the sampling process.

We utilize weighted reservoir sampling (WRS) [Cha82, Wym?21]
to sample a light source based on the light visibility estimated by
the neural network and BRDF contribution to the shaded point,
providing an unbiased sampling mechanism (see Section 3). The
network architecture is based on a fully-fused multilayer percep-
tron (MLP) [MRNK21], which allows for efficient online training
and inference on contemporary GPUs in real-time frame rates. We
employ multi-resolution hash-grid encoding [MESK22] to learn
high-frequency details in a lower-dimensional space. The proposed
method can be easily integrated into existing real-time rendering
pipelines. For instance, the proposed method can be used in next
event estimation for reflected bounces in path tracing, or for spa-
tiotemporal reservoir sampling (ReSTIR) [BWP*20] to sample ini-
tial candidates or to recover after abrupt visibility changes that
might otherwise cause significant noise. Our neural representation
of visibility works either with individual lights directly, or their
clusters, to support scenes with an arbitrary number of lights.

https://orcid.org/0000-0003-0087-2645
https://orcid.org/0000-0002-3149-1442

20f7 Jakub BokSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling

2. Previous Work

Global illumination algorithms are notoriously known for their
high computational demands. Therefore, a vast body of ac-
celeration techniques has been proposed. Among these, vari-
ous caching strategies play an important role, including irradi-
ance caching [War94], which was later generalized to radiance
caching [KGPBO0S5]. These approaches are generally biased due to
interpolation. To avoid bias, the idea is to reuse cached informa-
tion only to guide the sampling process to better match the target
distribution. Thus, numerous path guiding algorithms have been
proposed, employing algorithms such as hierarchical data struc-
tures [MGN17, TIKH24], parametric mixture models [VKS*14],
neural networks [MMR™*19], or a combination of these [HIT*24].

With the advent of many-light rendering [DKH* 14], the prob-
lem of global illumination reduces to direct lighting with a large
number of virtual point lights, necessitating efficient light sampling
techniques. Traditional solutions are either based on arranging
light sources into a hierarchical data structure [WFA*05, CEK18,
MPC19], sampling the light transport matrix [HPBO7], or Bayesian
inference [VKKI18]. Guo et al. [GEE20] presented a method for
caching visibility between voxels significantly reducing number of
precise visibility tests required. Most of the aforementioned meth-
ods are designed for offline rendering; the overhead is prohibitively
expensive for real-time applications.

With hardware acceleration of deep learning and ray tracing,
physically-based rendering and neural-based approaches have be-
come more compelling for real-time applications. Spatiotemporal
reservoir sampling (ReSTIR) [BWP*20] became the de facto stan-
dard for sampling direct lighting in real-time ray tracing, forgo-
ing building any complex data structures, and exploiting spatial
and temporal correlation to efficiently process a very large number
of lights. Several neural-based approaches have been recently pro-
posed for real-time scenarios: a neural radiance cache [MRNK21],
neural shadow mapping [DNSD22], neural light grid for precom-
puted indirect lighting [ISSS24], and a neural-based rendering
framework employing an attention mechanism to solve the many-
light problem [RHP*24]. Concurrently to our work, Dereviannykh
et al. [DKHD24] proposed to use neural incidence radiance caching
in combination with two-level Monte Carlo integration to achieve
unbiased estimates. The authors also proposed to cache visibility
of the environment map lighting as a special case. A neural im-
portance sampling of many lights [FHBK25] combined a light hi-
erarchy with neural network to predict light selection distribution
directly, based on reflected radiance.

3. Neural Visibility Cache
3.1. Algorithm Outline

In this section, we describe our neural visibility cache (NVC) and
how to use it for light sampling. We train a multilayer percep-
tron (MLP) to predict (non-binary) visibility between any point and
any light source (or a cluster of light sources) in the scene. The non-
binary visibility accounts for soft shadows cast by area lights and
semi-transparent surfaces. Given a 3D position in the scene, we
first use the multi-resolution hash-grid encoding [MESK?22] to en-
code the position, that we subsequently feed into the MLP, which

(1)

Figure 2: Overview of our method. We use the multi-resolution
hash-grid encoding [MESK22] to encode a 3D position (1), which
is fed to a neural network (2). The output of the network is plugged
into the weighted reservoir sampling (WRS) [Cha82, Wym21] (3).

outputs an estimated visibility for each light source; each neuron
of the output layer corresponds to a single light. Finally, we use
weighted reservoir sampling (WRS) [Cha82, Wym?21] to sample a
light source using the visibility estimates provided by the MLP (see
Figure 2). To ensure our method remains unbiased, we clamp zero
and possibly negative values to a small positive constant (see Fig-
ure 5). This introduces a slight amount of noise while avoiding bias.

We approximate the product of BRDF and the cosine term (see
Equation 1) by linearly transformed cosines (LTC) [HDHN16]; we
then multiply this by the light radiance and visibility predicted by
the neural network to calculate the weights of lights contributing to
shaded points for WRS. Thus, the probabilities of selecting each
sample account for both visibility and BRDF, reducing noise in
shadowed areas and penumbras as well. In contrast to methods
based on estimating radiance [FHBK25], we only estimate visibil-
ity and calculate exact reflected radiance analytically. This leads to
faster training of the network, requiring less training iterations to
converge.

Our algorithm can be used as a standalone or as a generator of
initial candidates for ReSTIR (see Section 4.1.1). This increases
convergence speed and reduces noise in disoccluded pixels where
ReSTIR can struggle to find meaningful initial light samples. Re-
STIR implementations typically cast a shadow ray for a selected
initial candidate and invalidate it if it is occluded. When generat-
ing initial candidates using our method, this is unnecessary as we
already take visibility into account for all candidates.

To solve a many-lights problem, we employ a clustered ap-
proach, where each output neuron represents the average visibility
of a light cluster, instead of an individual light source. This way,
we can support arbitrary number of lights, sorted into fixed num-
ber of clusters. Sampling then becomes a two-step process, where a
cluster of lights is selected first, and then a light sample within the
cluster.

3.1.1. Neural Direct Illumination

Since light weights used for WRS are based on LTC shading and
visibility, we can also use them directly as an approximate direct
illumination (see Figure 3). This yields illumination with approxi-
mate shadows, which is biased but very fast and noise-free, with-
out casting any shadow rays. We call this neural direct illumination
(Neural DI), which can be used as an approximation of direct illu-
mination for deeper bounces in path tracing or for a fast preview.

Jakub BoksSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling 3of7

[
p
a ‘4

Ground Truth

&

Figure 3: Neural DI produces noise-free images using only one
sample per pixel: Sponza and kitchen scenes using 32 lights and
one sample per pixel. To accentuate shadows, we replaced textured
materials with gray diffuse material. Notice that our method can
learn penumbras from noisy training data.

Note that this is only applicable to the case when output neurons
represent individual lights, not clusters.

3.2. Neural Network Architecture

We use a multilayer perceptron (MLP) with 2 hidden layers, each
containing 32 neurons. The activation function for hidden layers
is the leaky rectified linear unit (ReLU) with a slope of 0.01. We
have tested several activation functions and found that leaky ReL.U
achieves the lowest training loss. For the output layer, we use the
sigmoid activation function. Sigmoid not only maps the output to
the range of valid visibility values [0,1], but it also reduces the
training loss faster than leaky ReLU. The neural network train-
ing with backpropagation uses the L2 loss function. For the multi-
resolution hash-grid encoding, we use 10 levels with the base reso-
lution 16 and 4 features per level. This setup leads to approximately
562k learned parameters represented using 32-bit floats. Notice
that the majority of these parameters correspond to the hash-grid
weights, with only a marginal number dedicated to the MLP. The
hash encoding is a critical component in achieving high quality and
fast training of our method. For scenes with a low light count, the
number of features per level can be decreased.

3.3. Training

We use the He initialization strategy [HZRS15] to initialize the
MLP. For training, we use the Adam optimizer [KB14] with a vari-
able base learning rate. We start with a learning rate of 0.05 and we
linearly lower it for the first 200 training steps down to 0.001. This
significantly speeds up training at the beginning, which converges
to a stable state faster. We perform one training step per frame. Our
training examples consist of a random position in the scene as the

World-space data

World-space + screen-space data

Figure 4: Using world-space data for training causes artifacts that
manifest as dark blobs, highlighted in red circles (left). Introducing
screen-space data for training fixes the problem (right).

input to the network and the visibility of each light at that input
point as the target for the network output.

We have also tried training the network on the shadowed radi-
ance of lights (light intensity attenuated by the squared distance
to the light multiplied by visibility). This only worked for simple
scenes, while for scenes with complex occlusion, most of the train-
ing samples were close to zero due to strong distance attenuation.
As a result, the network had a tendency to predict extremely low
values everywhere. Therefore, we settled on training the network
on visibility values between O and 1. Each training sample com-
prises mutual visibility for one random sample on a light and a
given point. The visibility in this case is binary, but for area lights,
the neural network will eventually learn the average visibility over
the whole area of the light (penumbra), which is not binary.

There are several options for generating these training exam-
ples: random points within the scene in world-space, random points
on surfaces visible from the camera (screen-space) and random
points distributed over the scene geometry. Using screen-space data
achieves the best result for a given camera view, but the network
adapts slower for new views. Using only world-space data needs
no adaptation for new views, but introduces dark blob artifacts
(see Figure 4). Generating data on the geometry does not train
the network to predict visibility in empty areas, which might be-
come occupied in the future frames due to animation. Additionally,
it makes it impossible to use our method for light sampling within
volumes of participating media. We found that using a combination
of world-space data and screen-space data works best as it fixes the
artifacts but also adapts very fast to camera movement. Our solu-
tion uses a combination of 4096 world-space samples distributed
randomly across the scene and another 4096 samples taken ran-
domly on surfaces visible from the camera.

We cast a shadow ray towards each of the light sources from each
training point to produce the training example. This is very fast in
practice, since we only use 8196 training points per frame, and the
number of lights is limited to the number of output neurons (32 for
our test scenes).

3.4. Clustering

A method described so far, representing visibility of each light in
the scene with a dedicated output neuron, limits the number of sup-
ported lights to the size of the output layer allowed by the selected
network architecture and target hardware (32 in our implemen-
tation). In this section, we introduce a clustered neural visibility
cache approach (Clustered NVC), where instead of representing

4 of 7 Jakub BokSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling

Figure 5: Our method can produce a biased result (top Tow) which
typically exhibits as a hard boundary around heavily shadowed ar-
eas. Clamping the visibility to 0.001 (bottom row) yields an unbi-
ased result at the cost of slightly higher variance, converging to
the ground truth. The left column shows results for one sample per
pixel, while the right column shows converged results.

individual lights, the output neurons represent the visibility of a
cluster, which can consist of an arbitrary number of lights.

We use the k-means algorithm [Mac67, L1082] to cluster the
lights into k clusters (we use k = 32). During training, we ran-
domly select a light source within each cluster to train the network
to predict average visibility of the cluster for any point in scene.
This approach works especially well for interior scenes with many
rooms, as we can quickly cull light clusters not contributing to the
room with the camera. Alternatively, lights can be clustered based
on the mesh they belong to (e.g., clustering emissive triangles of a
complex mesh representing a lamp or a neon sign).

To sample a light using our neural visibility cache with clus-
ters, we employ a two-step process based on WRS and resam-
pled importance sampling (RIS) [TCEO5] implemented with reser-
voirs [BWP*20]. First step uses WRS to sample a cluster y out
of m clusters, based on the inferred average cluster visibility at
that point, resulting in a reservoir with the selected sample y, its
sampling weight w(y), and the sum of their sampling weights
Wsum = ¥.j=1 W(y;)- The second step uses a streaming RIS [TCEOS5]
to generate a final light sample x selected from the pool of my lights
within the cluster y. The source probability density function p(x)

for RIS is defined as p(x) = m% mi) where m% is a reciprocal

weight of the reservoir from the first step and miv is a probability
of sampling a light uniformly within the cluster. The target proba-
bility density function p(x) for RIS is selected based on the BRDF
contribution and LTC lighting, same as before.

We found out that more training data is needed to provide plau-
sible results for scenes with many lights. Therefore, we use 49152
training examples for the Subway scene with 60k lights. We have
also found out that the optimal hash-grid settings are different for
the clustered approach, since the approximation we are trying to
learn is lower frequency in nature, and we use 8 levels with the
base resolution 2 for this case.

4. Results and Discussion

We implemented the proposed method in DirectX 12 and HLSL.
Rendering each frame consists of the following five passes: (1) G-
buffer generation, (2) training data generation, (3) network train-
ing, (4) inference & light sampling, and (5) shading. The neural
network is implemented as a fully-fused MLP [MRNK21], allow-
ing us to train and infer the neural network entirely in the on-chip
shared memory. Our implementation allows to execute inference
inline in the scope of DXR ray tracing shaders, enabling to use our
method on every bounce of light while tracing paths. All tests were
executed on AMD Radeon RX 7900 XT.

4.1. Comparison to Screen-space ReSTIR

As a reference method, we implemented screen-space ReSTIR us-
ing 8 initial candidates, casting a shadow ray for the selected initial
candidate. We use temporal resampling where we clamp contribu-
tion of the previous reservoir to 20 the contribution of new reser-
voir. Spatial resampling uses a radius of 32 pixels. Unless stated
otherwise, we use one sample per pixel for all tests, and both Re-
STIR and the neural network are converged for 1024 frames. Note
that the FLIP error of both methods is already significantly reduced
after 20 to 30 training steps (see Figure 6).

Compared to screen-space ReSTIR, our neural light sampling
achieves a lower FLIP error [ANA21] at a similar time budget, es-
pecially in the occluded regions (see Figures 1 and 9). FLIP error is
reduced by about 20% for the Kitchen scene and about 45% for the
Sponza scene. We can make the method unbiased by clamping the
output of the neural network (discussed in Section 3.1) at the cost of
slightly increased variance (see Figure 5). Neural DI that directly
uses the visibility estimates provided by the neural network (see
Section 3.1.1) is biased by definition, yet it provides significantly
lower error than ReSTIR and neural light sampling (see Figure 1).
The bias exhibits at the edges and heavily shadowed areas (see Fig-
ure 3).

4.1.1. Combining ReSTIR with Clustered NVC

To generate initial candidates, standard ReSTIR uses a RIS loop
with user-selected number of candidates (we use 8), which gener-
ates a reservoir that can participate in the streaming RIS and for
spatial and temporal reuse. We combine our neural approach with
ReSTIR by replacing the initial candidates generation routine with
our clustered NVC. Our method also generates a reservoir, using
a two-step process described in section 3.4, therefore it can be di-
rectly used to generate initial candidates.

While using NVC for initial candidates improves the quality of
ReSTIR overall, the biggest benefit is for boosting convergence
rate for disocclusions. Figure 7 shows a significant noise reduc-
tion when NVC is used for initial candidates after a disocclusion
event. Running NVC for ReSTIR once it converges only improves
ReSTIR quality insignificantly, while introducing an overhead of
running the inference for every pixel. Therefore, we recommend
running NVC only for disoccluded pixels to boost quality of initial
candidates. This implementation leads to runtime performance only
5% lower compared to standard ReSTIR, on a test using a dynamic
camera flying around the scene for 1024 frames.

Jakub BoksSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling S5of7

NRC

—— LS (ours)
ReSTIR
100 — NRC

ax107 \\
3x10

10°

NLS (ours)

ReSTIR

0.575 0.444 0.423 . 9
10 10
Training steps [-]

Figure 6: A comparison of NRC (top), our neural light sampling (NLS) (center) and screen space ReSTIR (bottom) on a progression of 128
frames. Number under each image represents its FLIP error, which decreases over time for all methods, but NRC suffers from color artifacts,
especially at the beginning of training. Our method remains unbiased even at the beginning while the network is not sufficiently trained,
exhibiting as increased variance, similarly to ReSTIR. Our method reduces the FLIP error faster than other methods, achieving lower error

than ReSTIR even only after three training steps

~
-

FLIP 0.876

Figure 7: A comparison of standard ReSTIR (left), ReSTIR with initial candidates generated bour c

~
ReSTIR + Clustered NVC (ours)

. ound"ilh Fl \%&

— - PRI e |
lustered NVC (center) and ground

truth (right) in an idealized case when disocclusions happen in every pixel. The Subway scene contains 60k lights. We simulate disocclusions
by invalidating motion vectors for all pixels, using one sample per pixel. This demonstrates how clustered NVC can help ReSTIR to recover

after disocclusion.

4.2. Comparison to Neural Radiance Cache

For a direct comparison of our method to the neural radiance cache
(NRC) [MRNKZ21], we have implemented a version of NRC which
caches only direct illumination from all lights on a primary hit
(NRC DI). We use the exactly same network architecture (except
the output layer which consists of three neurons as radiance is
RGB value, and we use leaky ReLU activation function to allow
for unbounded values) and training data procedure as we do for
our method. The NRC is not limited by number of lights, but it
has several drawbacks compared to our method. For optimal re-
sults, NRC implementation requires a larger MLP, which lowers
the training and inference performance. Another disadvantage is
that NRC requires more training steps to achieve usable results (see
Figure 6). At the beginning of training, the NRC produces random
colors, introducing significant error to the resulting image. NRC
predicts a product of the wavelength-dependent radiance and vis-
ibility, manifesting blurry artifacts and color shifts (see Figure 8).
Our method instead calculates the radiance analytically with LTCs.
The predicted visibility is used to guide the light sampling process,
which remains unbiased, even when the network training has not
yet converged (in this case, we get increase in variance instead of
bias). Compared to NRC, our method is limited to direct illumina-

tion and a smaller number of lights, but for this purpose it achieves
unbiased results with a smaller network and does not suffer from
artifacts due to under-training and radiance approximation.

4.3. Performance

Training data generation with our default configuration (8196 train-
ing examples and 32 lights) takes 0.34 ms for the Kitchen scene
and 0.50 ms for the Sponza scene. The neural network training step
(backpropagation and optimization) takes 0.75 ms for both scenes.
When training data generation and training itself is implemented as
separate steps, where first step writes out the data into memory for
second step to consume, it is possible to perform multiple training
iterations over same data. As we only perform one step per frame,
we can fuse data generation and training together, achieving about
5% speedup. We run inference once per pixel at 1.87 ms per frame
for 1920 x 1080 resolution with 32 lights. The inference itself takes
1.32 ms, while the remaining time is spent on the WRS algorithm.
For comparison, replacing the inference call of our NVC by casting
a shadow ray towards each of the light sources for every pixel on
screen takes about 7 ms for the Kitchen scene with 32 lights (more
than 3 x higher).

60f7 Jakub BokSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling

l NRC

. Neural light sampling (ours)

f ‘ Ground Truth

Figure 8: NRC approximating a product of radiance and visibility exhibits blurry artij‘ais and color shifts (left). Our method computes
exact radiance analytically and samples the light sources stochastically for unbiased rendering (middle). The ground truth accumulated with

many frames (right).

Neural light sampling (Ours)

FLIP 0.195 -

FLIP 0.103

Figure 9: Comparison of neural light sampling (left) to creen-
space ReSTIR (right) on the Sponza scene with 32 lights. Neural
light sampling produces lower error at the same performance cost.

5. Conclusion and Future Work

We proposed a lightweight neural-based sampling method for real-
time direct illumination based on caching the non-binary visibility.
With a minor modification, our method provides unbiased estimates
with lower error than screen-space ReSTIR at a similar cost. Com-
pared to ReSTIR, our method operates in the world-space, making
it more robust to visibility changes that ReSTIR struggles with. In
fact, our neural light sampling could be used in combination with
ReSTIR to sample the initial candidates. As a world-space method,
it can also be used for direct illumination of volumes of participat-
ing media. We used a clustered approach to support an arbitrary
number of lights with a fixed-size neural network. We also pro-
posed a biased variant that directly uses the visibility estimates, de-
creasing variance even further at the cost of some bias. Thanks to
continuous online training, our method adapts to the dynamic con-
tent including animated lights, geometry, and camera. Compared
to neural importance sampling of many lights [FHBK25], we are
only caching visibility with a smaller MLP, achieving faster train-
ing and simpler implementation (except from the position, we do
not require other inputs, e.g. the surface normal to the MLP).

The limitation of our clustered NVC approach is that efficiency
is highly dependent on the quality of the clusters created, and total
number of lights. For future work, an interesting direction would be
to explore other methods for light clustering, e.g., the ones based on
hierarchies [VKK18, FHBK25] and light culling [TH16]. An early
approach of Shirley et al. [SWZ96] of sorting lights into sets of
important and unimportant lights could be adapted to our approach
by creating one cluster of unimportant lights to ensure unbiased-

ness and use remaining available clusters to represent the important
lights.

Another interesting research direction would be to cache mutual
visibility between any two points in the scene. This would enable
us to query visibility of any light, not just the ones represented by
output neurons. To make this practical, such query would either
have to be faster than a ray cast, or it would have to return visibility
for a batch of queries in a single inference call, to amortize the cost.

Finally, we need to overcome the limitation of the count of lights
(or light clusters) due to the restrictions imposed on the size of
the neural network. We can achieve linear scaling naively by hav-
ing multiple networks and possibly time-slicing their training (only
train one network per frame) to maintain fixed training budget.
Overcoming this limitation in a scalable way is a non-trivial task
for the future work.

Acknowledgements

We would like to thank Holger Griin and Carsten Benthin for
useful discussions and their support. Model courtesy: Sponza
(Crytek), Subway (Sketchfab/Alex Murias), Country Kitchen
(Blendswap/Jay-Aurtist).

References

[ANA21] ANDERSSON P., NILSSON J., AKENINE-MOLLER T.: Visu-
alizing and Communicating Errors in Rendered Images. In Ray Tracing
Gems II, Marrs A., Shirley P., Wald 1., (Eds.). 2021, ch. 19, pp. 301-320.
1,4

[BWP*20] BITTERLI B., WYMAN C., PHARR M., SHIRLEY P,
LEFOHN A., JAROSZ W.: Spatiotemporal reservoir resampling for real-
time ray tracing with dynamic direct lighting. ACM Transactions on
Graphics (Proceedings of SIGGRAPH) 39, 4 (July 2020). 1,2, 4

[CEK18] CONTY ESTEVEZ A., KULLA C.: Importance sampling of
many lights with adaptive tree splitting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques 1,2 (2018), 1-17. 2

[Cha82] CHAO M.-T.: A general purpose unequal probability sampling
plan. Biometrika 69, 3 (1982), 653-656. 1,2

[DKH*14] DACHSBACHER C., KRIVANEK J., HASAN M., ARBREE A.,
WALTER B., NOVAK J.: Scalable realistic rendering with many-light
methods. Computer Graphics Forum 33,1 (2014), 88-104. 2

[DKHD24] DEREVIANNYKH M., KLEPIKOV D., HANIKA J., DACHS-
BACHER C.: Neural two-level monte carlo real-time rendering. In Com-
puter Graphics Forum (2024), Wiley Online Library, p. €70050. 2

Jakub BoksSansky & Daniel Meister / Neural Visibility Cache for Real-Time Light Sampling 70f7

[DNSD22] DATTA S., NOWROUZEZAHRAI D., SCHIED C., DONG Z.:
Neural shadow mapping. In ACM SIGGRAPH 2022 Conference Pro-
ceedings (2022), pp. 1-9. 2

[FHBK25] FIGUEIREDO P., HE Q., BAKO S., KALANTARI N. K.:
Neural importance sampling of many lights. arXiv preprint
arXiv:2505.11729 (2025). 2, 6

[GEE20] Guo J. J., EISEMANN M., EISEMANN E.: Next event estima-
tion++: Visibility mapping for efficient light transport simulation. Com-
puter Graphics Forum 39, 7 (2020), 205-217. 2

[HDHN16] HEeIiTtz E., DUPUY J., HILL S., NEUBELT D.: Real-time
polygonal-light shading with linearly transformed cosines. ACM Trans-
actions on Graphics (TOG) 35, 4 (2016), 1-8. 2

[HIT*24] HUANG J., [1ZUKA A., TANAKA H., KOMURA T., KITA-
MURA Y.: Online neural path guiding with normalized anisotropic spher-
ical gaussians. ACM Trans. Graph. 43, 3 (Apr. 2024). 2

[HPBO7] HASAN M., PELLACINI F., BALA K.: Matrix row-column
sampling for the many-light problem. ACM Trans. Graph. 26, 3 (July
2007), 26—es. 2

[HZRS15] HE K., ZHANG X., REN S., SUN J.: Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(2015), pp. 1026-1034. 3

[ISSS24] IWANICKI M., SLOAN P.-P., SILVENNOINEN A., SHIRLEY P.:
The neural light grid: A scalable production-ready learned irradiance vol-
ume. SIGGRAPH Advances in Real-Time Rendering in Games (2024).
2

[KB14] KINGMA D., BA J.: Adam: A method for stochastic optimiza-
tion. International Conference on Learning Representations (12 2014).
3

[KGPB05] KRIVANEK J., GAUTRON P., PATTANAIK S., BOUATOUCH
K.: Radiance caching for efficient global illumination computation. Vi-
sualization and Computer Graphics, IEEE Transactions on 11, 5 (sept.-
oct. 2005), 550 -561. 2

[L10o82] LLOYD S.: Least squares quantization in pcm. /EEE transactions
on information theory 28, 2 (1982), 129-137. 4

[Mac67] MACQUEEN J.: Some methods for classification and analysis
of multivariate observations. In Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability, Volume 1: Statistics
(1967), vol. 5, University of California press, pp. 281-298. 4

[MESK22] MULLER T., EVANS A., SCHIED C., KELLER A.: Instant
neural graphics primitives with a multiresolution hash encoding. ACM
transactions on graphics (TOG) 41, 4 (2022), 1-15. 1,2

[MGN17] MULLER T., GROSS M., NOVAK J.: Practical path guiding
for efficient light-transport simulation. Computer Graphics Forum 36, 4
(June 2017), 91-100. 2

[MMR*19] MULLER T., MCWILLIAMS B., ROUSSELLE F., GROSS
M., NoVAK J.: Neural importance sampling. ACM Transactions on
Graphics (ToG) 38, 5 (2019), 1-19. 2

[MPC19] MOREAU P., PHARR M., CLARBERG P.: Dynamic many-light
sampling for real-time ray tracing. In High Performance Graphics (Short
Papers) (2019), pp. 21-26. 2

[MRNK21] MULLER T., ROUSSELLE F., NOVAK J., KELLER A.:
Real-time neural radiance caching for path tracing. arXiv preprint
arXiv:2106.12372 (2021). 1,2,4,5

[RHP*24] RENH., HuO Y., PENG Y., SHENG H., XUE W., HUANG H.,
LAN J., WANG R., BAO H.: Lightformer: Light-oriented global neural
rendering in dynamic scene. ACM Trans. Graph 1,1 (2024). 2

[SWZ96] SHIRLEY P., WANG C., ZIMMERMAN K.: Monte carlo tech-
niques for direct lighting calculations. ACM Transactions on Graphics
(TOG) 15,1 (1996), 1-36. 6

[TCEO5] TALBOTJ., CLINE D., EGBERT P.: Importance Resampling for
Global Illumination. In Eurographics Symposium on Rendering (2005)
(2005), Bala K., Dutre P., (Eds.), The Eurographics Association. 4

[TH16] TOKUYOSHI Y., HARADA T.: Stochastic light culling. J Comput
Graph Tech 5, 1 (2016). 6

[TIKH24] TOKUYOSHI Y., IKEDA S., KULKARNI P., HARADA T.: Hi-
erarchical light sampling with accurate spherical gaussian lighting. In
SIGGRAPH Asia 2024 Conference Papers (New York, NY, USA, 2024),
SA 24, Association for Computing Machinery. 2

[VKK18] VEVODA P., KONDAPANENI I., KRIVANEK J.: Bayesian on-
line regression for adaptive direct illumination sampling. ACM Trans.
Graph. 37,4 (July 2018), 125:1-125:12. 2,6

[VKS*14] VORBA J., KARLIK O., SIK M., RITSCHEL T., KRIVANEK
J.: On-line learning of parametric mixture models for light transport
simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2014) 33, 4 (aug 2014). 2

[War94] WARD G. J.: Adaptive shadow testing for ray tracing. In Pho-
torealistic Rendering in Computer Graphics: Proceedings of the Second
Eurographics Workshop on Rendering (1994), Springer, pp. 11-20. 2

[WFA*05] WALTER B., FERNANDEZ S., ARBREE A., BALA K.,
DONIKIAN M., GREENBERG D. P.: Lightcuts: a scalable approach to
illumination. In ACM SIGGRAPH 2005 Papers. 2005, pp. 1098-1107. 2

[Wym21] WYMAN C.: Weighted Reservoir Sampling: Randomly Sam-
pling Streams. Apress, Berkeley, CA, 2021, pp. 345-349. 1,2

