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ABSTRACT

Efficient and accurate shadow computation is a long-standing problem in 
computer graphics. In real-time applications, shadows have traditionally been 
computed using the rasterization-based pipeline. With recent advances of graphics 
hardware, it is now possible to use ray tracing in real-time applications, making 
ray traced shadows a viable alternative to rasterization. While ray traced shadows 
avoid many problems inherent in rasterized shadows, tracing every shadow ray 
independently can become a bottleneck if the number of required rays rises, e.g., 
for high-resolution rendering, for scenes with multiple lights, or for area lights. 
Therefore, the computation should focus on image regions where shadows actually 
appear, in particular on the shadow boundaries.

We present a practical method for ray traced shadows in real-time applications. 
Our method uses the standard rasterization pipeline for resolving primary-ray 
visibility and ray tracing for resolving visibility of light sources. We propose an 
adaptive sampling algorithm for shadow rays combined with an adaptive shadow-
filtering method. These two techniques allow computing high-quality shadows 
with a limited number of shadow rays per pixel. We evaluated our method using a 
recent real-time ray tracing API (DirectX Raytracing) and compare the results with 
shadow mapping using cascaded shadow maps.

13.1	 �INTRODUCTION

Shadows contribute significantly to realistic scene perception. Due to the importance 
of shadows, many techniques have been designed for shadow computation in the 
past. While offline rendering applications use ray tracing for shadow evaluation [20], 
real-time applications typically use shadow maps [21]. Shadow mapping is highly 
flexible in terms of scene geometry, but it has several important issues:

>> Perspective aliasing, which shows as jaggy shadows, due to insufficient  
shadow-map resolution or poor use of its area.
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>> Self-shadowing artifacts (shadow acne) and disconnected shadows  
(Peter Panning).

>> Lack of penumbras (soft shadows).

>> Lack of support for semitransparent occluders.

A number of techniques have been developed to address these issues [7, 6]. Usually, 
a combination of several of them and manual fine-tuning by the scene designer are 
required to achieve good results. This makes an efficient implementation of shadow 
mapping complicated, and different solutions are usually required for different 
scenes.

Ray tracing [20] is a flexible rendering paradigm that can compute accurate 
shadows with a simple algorithm and is able to handle complex lighting (area 
lights, semitransparent occluders) in an intuitive and scalable way. However, 
it has been difficult to achieve ray tracing performance that is sufficient for 
real-time applications. This was due to limited hardware resources as well as 
implementation complexity of the underlying algorithms required for real-time 
ray tracing, such as fast construction and maintenance of spatial data structures. 
There was also no explicit ray tracing support in popular graphics APIs used for 
real-time applications.

With the introduction of NVIDIA RTX and DirectX Raytracing (DXR), it is now 
straightforward to exploit ray tracing using DirectX and Vulkan APIs. The recent 
NVIDIA Turing graphics architecture provides hardware support for DXR using 
the dedicated RT Cores, which greatly improve ray tracing performance. These 
new features combine well with emerging hybrid rendering methods [11] that use 
rasterization to resolve primary-ray visibility and ray tracing to compute shadows, 
reflections, and other illuminations effects.

However, even with the new powerful hardware support, we have to use our 
resources wisely when rendering high-quality shadows using ray tracing. A naive 
algorithm might easily cast too many rays to sample shadows from multiple light 
sources and/or area light sources, leading to low frame rates. See Figure 13-1 for 
an example.
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In this chapter, we introduce a method that follows the hybrid rendering paradigm. 
Our method optimizes the evaluation of ray traced shadows by using adaptive shadow 
sampling and adaptive shadow filtering based on a spatiotemporal analysis of light-
source visibility. We evaluate our method using the Falcor [3] framework and compare 
it with cascaded shadow maps [8] and naive ray traced shadows [20].

13.2	 �RELATED WORK

Shadows have been a focus of computer graphics research since the very beginning. 
They are a native element of Whitted-style ray tracing [20], where for each hit point a 
shadow ray is cast to each light source to determine mutual visibility. Soft shadows 
were introduced through distributed ray tracing [4], where the shadow term is 
calculated as an average of multiple shadow rays cast to an area light source. This 
principle is still the basis for many soft shadow algorithms today.

Interactive shadows were made possible through the shadow mapping [21] and 
shadow volume [5] algorithms. Due to its simplicity and speed, most interactive 
applications nowadays use shadow mapping, despite a number of disadvantages and 
artifacts caused by its discrete nature. Several algorithms for soft shadows are based 
on shadow mapping, most notably percentage closer soft shadows [9]. However, 
despite the many approaches and improvements to the original algorithms (for a 
comprehensive overview, see the book and course by Eisemann et al. [6, 7]), robust 
and fast soft shadows are still an elusive goal.

Figure 13-1.  Left: soft shadows rendered using naive ray traced shadows with 4 samples per pixel 
running at 3.6 ms per frame. Center: soft shadows rendered using our adaptive method with 0 to 5 
samples per pixel running at 2.7 ms per frame. Right: naive ray traced shadows using 256 samples per 
pixel running at 200 ms per frame. Times measured using a GeForce RTX 2080 Ti GPU. Top: visibility 
buffers. Bottom: final images.
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Inspired by advances in interactive ray tracing [18], researchers recently went 
back to investigating the use of ray tracing for hard and soft shadows. However, 
instead of performing a full ray tracing pass, a key idea was to use rasterization 
for the primary rays and to use ray tracing for only shadow rays [1, 19], leading to 
a hybrid rendering pipeline. To make this viable for soft shadows, the industry is 
experimenting with temporal accumulation in various ways [2].

The NVIDIA Turing architecture finally introduced fully hardware-accelerated 
ray tracing to the consumer market, and easy integration with the rasterization 
pipeline exists in the DirectX (DXR) and Vulkan APIs. Still, soft shadows for multiple 
light sources pose a challenge and require intelligent adaptive sampling and 
temporal reprojection approaches, as we will describe in this chapter.

The advent of real-time ray tracing also opens the door for other hybrid rendering 
techniques, for example adaptive temporal antialiasing, where pixels that cannot 
be rendered through reprojection are ray traced [14]. Temporal coherence has 
been used specifically for soft shadows before [17], but here we introduce a much 
simpler temporal coherence scheme based on a novel variation measure to 
estimate the required sample count.

13.3	 �RAY TRACED SHADOWS

Shadows appear when a scene object—a shadow caster—blocks light that would 
otherwise contribute to illumination at another scene object—the shadow receiver. 
Shadows can appear due to direct or indirect illumination. Direct illumination 
shadows are induced when the visibility of primary light sources is blocked, 
indirect illumination shadows are induced when strong reflections or refractions 
of light at scene surfaces are blocked. In this chapter, we focus on the case of 
direct illumination—indirect illumination can be evaluated independently using 
some standard global-illumination technique such as path tracing or many-light 
methods.

The outgoing radiance L(p, ωo) at a point P in direction ωo is defined by the rendering 
equation [12]:

	     ( ) ( ) ( ) ( )( )o e o i o i i i P iL P, L f P, , L P, d ,ˆw w w w w w wò
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where Le(ωo) is the self-emitted radiance, f(P, ωi, ωo) is the BRDF, Li(P, ωi) is the 
incoming radiance from direction ωi, and n̂P is the normalized surface normal at 
point P.
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For the case of direct illumination with a set of point light sources, the direct 
illumination component of L can be written as a sum of contributions from individual 
light sources:
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where Pl is the position of light l, the light direction is ωl = (Pl − P)/‖Pl − P‖, Ll(Pl, ωl) is 
the radiance emitted from light source l in direction ωl, and v(P, Pl) is the visibility term, 
which equals 1 if the point Pl is visible from P and 0 if it is not.

The evaluation of v(p, pl) can easily be performed by shooting a ray from P toward Pl 
and checking if the corresponding line segment is unoccluded. Care must be taken 
near the endpoints of the line segment not to include the self-intersection of the 
geometry of the shaded point or the light source. This is usually resolved by shrinking 
the parametric range for valid intersection by a small ε-threshold.

The Ld due to an area light source a is given by
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where A is the surface of light a, n̂X is the normal of the light source surface at point 
X, ωX = (X − P)/‖X − P‖ is the direction from point P toward point X on the light source, 
La(X, ωX) is the radiance emitted from point X in direction ωX, and v(P, X) is the visibility 
term that equals 1 if the point X is visible from P and 0 if it is not.

This integral is commonly evaluated by Monte Carlo integration using a set of well-
distributed samples S on the light source:
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where ∣ S∣ is the number of light samples. In our work we separate the shading and 
visibility terms, and for shading we approximate the area light source with a centroid 
C of the light source:
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This allows us to accumulate the results of visibility tests for each light within a given 
frame and store them in a dedicated visibility buffer for each light. The visibility buffer 
is a screen-sized texture that holds visibility terms for each pixel. A more elaborate 
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method of shading and visibility separation was recently proposed by Heitz et al. [11],  
which might be used for light sources with large areas or more complicated 
BRDFs. Separating visibility allows us to decouple visibility computation from 
shading as well as analyzing and using the temporal coherence of visibility. An 
illustration of visibility evaluation for a point light source and an area light source 
is shown in Figure 13-2. The difference between the resulting shadows is shown in 
Figure 13-3.

Figure 13-2.  Left: for point light sources, a single shadow ray is cast toward each light source from 
the shaded point P. The ray toward light source L2 is blocked by an occluder, resulting in v(P, L2) = 0. The 
ray toward L1 is unoccluded, thus v(P, L1) = 1. Right: the visibility of a disk light source is evaluated by 
sampling using several shadow rays.

Figure 13-3.  An example of hard shadows (left) and soft shadows (right) computed by ray tracing, 
showing both visibility buffer and shaded image.

13.4	 �ADAPTIVE SAMPLING

A naive implementation of shadow computation using ray tracing requires a high 
number of rays to achieve a desired shadow quality, especially for larger area 
lights, as shown in Figure 13-1. This would decrease performance considerably 
with an increase in the number and/or size of lights. Because a high number of rays 
is required only in penumbra areas of an image, we base our method on identifying 
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these areas and then using more rays to sample them effectively. The fully lit and fully 
occluded areas are sampled sparsely, and the saved computational resources can be 
used for other ray tracing tasks such as reflections.

13.4.1	 �TEMPORAL REPROJECTION

To effectively increase the sample count used per pixel, we use temporal reprojection, 
which allows us to accumulate visibility values for visible scene surfaces over 
time. Temporal reprojection is becoming a standard tool in many recent real-time 
rendering methods [15], and in many cases it is already implemented within the 
application rasterization pipeline. We use the accumulated values for two purposes: 
first, estimating visibility variation to derive the required sample count, and second, 
determining the kernel size for filtering the sampled visibility.

We store the results of visibility calculations from previous frames in a cache 
containing four frames. To ensure correct results for dynamic scenes, we use reverse 
reprojection [15], which handles the camera movement. When starting an evaluation 
of a new frame, we perform reverse reprojection of three previous frames, stored in 
the cache, to the current frame. Thus, we always have a four-tuple of values from four 
consequent frames aligned with the image corresponding to the current frame.

Given a point Pt in clip space in frame t, the reprojection finds the corresponding clip-
space coordinates 

tP 1-
 in frame t − 1 as

			   t t t t t tP P1 1
1 1 1 ,- -
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where Ct and Ct − 1 are the camera projection matrices and Vt and Vt − 1 are the camera 
viewing matrices. After reprojection we check for depth discontinuities and discard 
invalid correspondences (mostly disocclusions). Depth discontinuities are detected 
using a relative depth difference condition, i.e., the point is successfully reprojected if 
the following condition holds:
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where ε is an adaptive depth similarity threshold, zn̂  is a z-coordinate of the view-
space normal of the corresponding pixel, and c1 and c2 are user-specified constants of 
linear interpolation (we used c1 = 0.003 and c2 = 0.017). The adaptive threshold ε allows 
for greater depth differences of valid samples on sloped surfaces.
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For successfully reprojected points, we store image-space coordinates in the range 
0 to 1. If the reprojection fails, we store negative values to indicate the reprojection 
failure for subsequent computations. Note that, as all previous frames have already 
been aligned during the previous reprojection steps, only one cache entry for 
storing the depth values z

tP 1-  is sufficient.

13.4.2	 �IDENTIFYING PENUMBRA REGIONS

The number of samples (rays) required for a given combination of shaded point 
and light source generally depends on the light size, its distance to the shaded 
point, and the complexity of occluding geometry. Because this complexity 
would be difficult to analyze, we base our method on using the temporal visibility 
variation measure Δv(x):

	     ( ) ( ) ( )( ) ( ) ( )( )t t t t tv x v x v x v x v x1 4 1 4max min ,- - - -D = ¼ - ¼ 	 (8)

where vt − 1(x) … vt − 4(x) are the cached visibility values for a pixel x in the four 
previous frames. Note that these visibility values are cached in a single four-
component texture per light.

The described measure corresponds to the range variation measure, which is 
highly sensitive to extreme values of the visibility function. Therefore, this measure 
is more likely to detect penumbra regions than other, smoother variation measures 
such as the variance.

The variation is zero for either fully lit or fully occluded areas and is usually greater 
than zero in penumbra areas. Our sample sets are generated with regard to the 
fact that we use four frames for variation computation, so they repeat only after 
these four frames. See Section 13.5.1.

To make results more temporally stable, we apply a spatial filter on the variation 
measure followed by a temporal filter. The spatial filter is expressed as

			     � ( )t tv M v T5 5 13 13,´ ´D = D * 	 (9)

where M5 × 5 is a nonlinear maximum filter using a 5 × 5 neighborhood followed by 
a convolution with a low-pass tent filter T13 × 13 with a 13 × 13 neighborhood. The 
maximum filter makes sure that a high variation detected in a single pixel will 
cause a higher number of samples to be used in surrounding pixels too. This is 
important for dynamic scenes to make the method more temporally stable and 
for cases where the penumbra is completely missed in nearby pixels. The tent 
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filter prevents abrupt changes in variation values to avoid flickering. Both filters are 
separable, therefore we execute them in two passes to reduce the computational 
effort.

Finally, we combine the spatially filtered variation measure � tvD  with temporally 
filtered values Δvt from the four previous frames. For the temporal filtering, we use a 
simple box filter, and we intentionally use the raw Δvt values that are cached prior to 
spatial filtering:

		
� ( )t t t t t tv v v v v v1 2 3 4

1 1 .
2 4 - - - -

æ ö
D = D + D + D + D + Dç ÷

è ø
	 (10)

Such a combination of filters proved efficient in our tests as it is able to propagate 
the variation over larger regions (using maximum and tent filters). At the same time, 
it does not miss small regions with large variation by combining the spatially filtered 
variation with the temporally filtered variation values from the previous frames.

13.4.3	 �COMPUTING THE NUMBER OF SAMPLES

The decision on the number of samples to be used for a given point is based on the 
number of samples used in the previous frame and the current filtered variation tvD .  
We use a threshold δ on the variation measure to decide whether to increase or 
decrease sampling density at the corresponding pixel. In particular, we maintain the 
sample counts s(x) for each pixel and use the following algorithm to update s(x) in the 
given frame:

	1.	 If ( )tv x dD >  and st − 1(x) < smax, increase the number of samples by one 
(st(x) = st − 1(x) + 1).

	2.	 If ( )tv x dD <  and the number of samples has been stable in the four 
previous frames, decrease the number of samples (st(x) = st − 1(x) − 1).

The maximum number of samples per light smax ensures a limited ray budget for each 
light per frame (we use smax = 5 for standard settings and smax = 8 for high-quality 
settings). The constraint of stability in the four previous frames used in step (2) induces 
a hysteresis into the algorithm and aims to prevent oscillations in the number of 
samples caused by a feedback loop between the number of samples and the variation. 
The described technique works with sufficient temporal stability and provides better 
results than directly computing s(x) from ( )tv xD .
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For pixels where reverse reprojection fails, we use smax samples and replace all 
cached visibility values with the current result. When a reverse reprojection fails 
for all pixels on the screen, e.g., when the camera pose changes dramatically, a 
sudden performance drop occurs due to the high number of samples used in each 
pixel. To prevent the performance drop, we can detect large changes of camera 
pose on the CPU, and we can reduce the maximum number of samples (smax) for 
several subsequent frames. This will momentarily cause noisier results, but it will 
prevent frame-rate stuttering, which is usually more disturbing.

13.4.4	 �SAMPLING MASK

Pixels for which our algorithm computes sample counts equal to zero indicate 
a region with no temporal and spatial variation. This is mostly the case for fully 
lit and fully shadowed regions in an image. For these pixels we might skip the 
calculation of visibility completely and use value from the previous frame. However, 
this may lead to an accumulation of errors over time in these regions, for example 
when a light is moving fast or the camera is zooming slowly (in both these cases 
the reprojection succeeds, but visibility can change). Therefore, we use a mask 
that enforces regular sampling for at least one fourth of the pixels. We enforce 
sampling of individual blocks of pixels on the screen as performance tests have 
shown that shooting a single ray for one pixel out of four in a close neighborhood 
yields similar performance as shooting rays for each of these pixels (probably due 
to warp dependencies). Therefore, we enforce sampling of a block of nb × nb pixels 
on the screen (we get the best performance increase for nb = 8).

To ensure that every pixel is sampled at least once in four frames, we use a 
matrix that checks if the sampling should be enforced in the current frame. We 
find an entry in a mask of size 4 × 4 repeated over the screen that corresponds 
to the location of the block. If the entry is equal to the current frame’s sequence 
number modulo four, all pixels in blocks with zero sample counts are sampled 
with one shadow ray per pixel per light. The mask is set up so that in each quad of 
neighboring blocks, only one block will be evaluated. Furthermore, every pixel will 
be evaluated once in four consecutive frames to make sure that new shadows are 
detected. This is illustrated in Figure 13-4. An example of the sample distribution 
using the adaptive sampling is shown in Figure 13-5.
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13.4.5	 �COMPUTING VISIBILITY VALUES

As a final step in our algorithm, we employ two filtering techniques on the visibility 
values themselves (as opposed to the visibility variation measure): temporal filtering, 
which makes use of results from previous frames, and spatial filtering, which applies 
a low-pass filter over visibility values and removes the remaining noise.

Recent denoising methods for global illumination, such as spatiotemporal variance-
guided filtering (SVGF) by Schied et al. [16] and AI-based denoisers, can produce 
noise-free results from sequences of stochastically sampled images with as little 
as one sample per pixel. These methods take care to preserve edge sharpness after 

Figure 13-4.  An example of the sampling mask matrix. In each sequence of four consecutive frames, the 
shadow rays are enforced even for pixels with low visibility variation.

Figure 13-5.  Left: image showing the pixels with nonzero sample counts. Note the sampling of the 
penumbra regions and the pattern enforced by the sampling matrix. Center: visibility buffer. Right: final 
image.
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denoising (especially on textured materials), typically by using information from 
noise-free albedo and normal buffers. We use a simpler solution that is specifically 
tailored toward shadow computation and combines well with our adaptive sampling 
strategy for shadow rays.

13.4.5.1  �TEMPORAL FILTERING

To apply temporal accumulation of visibility values, we calculate an average 
visibility value, effectively applying a temporal box filter on the cached reprojected 
visibility values:

			   ( )t t t t tv vv v v1 2 3

1 .
4 - - -= + + +� 	 (11)

Using a temporal box filter leads to the best visual results, since our sample sets 
are generated to be interleaved over the last four frames. Note that our approach 
does not explicitly account for the movement of lights. Our results indicate that 
for interactive frame rates (>30 FPS) and caching only four previous frames, the 
artifacts introduced by this simplification are quite minor.

13.4.5.2  �SPATIAL FILTERING

The spatial filter operates on the visibility buffer that was already processed by the 
temporal filtering step. We use a traditional cross bilateral filter with a variable-
sized Gaussian kernel to filter the visibility. The size of the filter kernel is chosen 
between 1 × 1 and 9 × 9 pixels and is given by the variation measure � tvD —more 
variation in a given area results in more aggressive denoising. The filter size is 
scaled linearly in dependence on � tvD , while the maximum kernel size is achieved 
for a predefined variation of η (we used η = 0.4). To prevent popping when switching 
from one kernel size to the other, we store precalculated Gaussian kernels for 
each size and linearly interpolate the corresponding entries between the two 
closest kernels. This is especially important for blending with the smallest kernel 
size to preserve hard edges where needed.

We make use of depth and normal information to prevent shadows leaking over 
geometry discontinuities. This makes the filter nonseparable, but we apply it as 
if it was with reasonably good results, as can be seen in Figure 13-6. Samples 
whose depths do not satisfy Equation 7 are not taken into account. Additionally, we 
discard all samples for which the corresponding normals do not satisfy the normal 
similarity test:

				    p qˆ ˆ ,z× >n n 	 (12)
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where pn̂  is a normal at a pixel p, qn̂  is a normal of the pixel q from the neighborhood 
of p, and ζ is a normal similarity threshold (we used ζ = 0.9).

Figure 13-6.  Difference between raw visibility values and filtered result. Left: using naive shadow-ray 
tests with 8 samples per pixel (4.25 ms per frame). Right: our method using 1 to 8 samples per pixel and 
the sampling mask (2.94 ms per frame).

The temporal filtering step packs the filtered visibility buffers for four lights into 
single four-component texture. Then, each spatial filtering pass operates on two of 
these textures at the same time, effectively denoising eight visibility buffers at once.

13.5	 �IMPLEMENTATION

This section describes details regarding the implementation of our algorithm.

13.5.1	 �SAMPLE-SET GENERATION

Our adaptive sampling method assumes that we work with samples that are 
interleaved over four frames. As the method uses different sample counts for 
each pixel, we generate an optimized set of samples for each size used in our 
implementation (1 to 8). In our implementation, we used two different quality settings: 
the standard-quality setting with smax = 5, and the high-quality setting with smax = 8.

Considering that we aim to interleave the samples over four frames and that the 
smallest effective spatial filter size is 3 × 3 (for spatial filtering), our sets contain 
smax × 4 × 3 × 3 samples. This yields sample counts effectively used for a single pixel of 36 
for 1 sample per pixel, 72 for 2 samples per pixel, and up to 288 for 8 samples per pixel.

In each of four consecutive frames, a different subset consisting of a quarter of these 
samples is used. Furthermore, in each pixel we use a different ninth of this subset. 
The choice of which ninth to use is given by pixel position within a block of 3 × 3 pixels 
repeated over the screen.
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We optimize the direct output of a Poisson distribution generator to decrease the 
discrepancy of the whole sample set also for the four subsets used in consecutive 
frames and nine of their subsets used for different pixels. This procedure optimizes 
sample sets with respect to their usage in temporal and spatial filtering and 
reduces visual artifacts. An example sample set is shown in Figure 13-7.

13.5.2	 �DISTANCE-BASED LIGHT CULLING

Even before casting the shadow rays, we can cull distant and low-intensity lights 
to increase performance. To do this, we calculate the range of each light—this is 
the distance where the intensity of a light becomes negligible due to its attenuation 
function. Before evaluating visibility, we compare the distance of the light to 
its range and simply store zero for non-contributing lights. Typical attenuation 
functions (inverse of squared distance) never reach zero, and thus it is practical 
to modify this function so that it reaches zero eventually, e.g., by implementing a 
linear drop-off below a certain threshold. This will decrease light ranges, making 
the culling more efficient while preventing popping when a light starts contributing 
again after being culled.

13.5.3	 �LIMITING THE TOTAL SAMPLE COUNT

Because our adaptive algorithm puts more samples in penumbras, a significant 
performance decrease can occur when the penumbra covers a large portion of the 
screen. For dynamic scenes, this could display as disturbingly high variations of 
frame rate.

Figure 13-7.  Left: samples colored by position on the screen—similar colors will be evaluated in pixels 
close to each other. Right: samples colored by the frame number—samples with the same color will be 
used in the same frame. Samples are well distributed in both temporal and spatial domains. The figure 
shows a sample set for three samples per pixel.
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We provide a method to limit the sample count globally based on computing the sum 
of the variation measures vD  over the whole image (we compute the sum using 
hierarchical reduction with mipmaps). If the sum rises above a certain threshold, 
we progressively limit the number of samples that can be used in each pixel. This 
threshold and the value at which a single sample per pixel should be used must be 
fine-tuned to the desired performance-to-visual-quality ratio. This will result in a 
momentary decrease in visual quality, but it can be preferable to stuttering caused by 
longer shadow calculation.

13.5.4	 �FORWARD RENDERING PIPELINE INTEGRATION

We implemented our algorithm within a forward rendering pipeline. Compared to 
deferred rendering, this pipeline provides advantages such as simpler transparency 
handling, support for more complex materials, hardware antialiasing (MSAA), and 
lower memory requirements.

Our implementation builds on top of the Forward+ pipeline introduced by Harada et al. [10], 
which makes use of a depth prepass and adds a light-culling stage to solve problems with 
overdraw and many lights. DXR makes integration of ray tracing into existing renderers 
straightforward, and considerable investment made into materials, special effects, etc. is 
therefore preserved when adding ray traced features such as shadows.

An overview of our method is shown in Figure 13-8. First, we perform the depth prepass 
to fill a depth buffer with no color buffer attached. After the depth prepass, we generate 
motion vectors based on camera movement and the normal buffer, which will be used 
later during denoising. The normal buffer is generated from depth values. Because it is 
not used for shading but denoising, this approximation works reasonably well.

Figure 13-8.  Overview of our ray tracing shadow algorithm.
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The layout of the buffers used in our method is shown in Figure 13-9. The visibility 
cache, the variance measures, and the sample counts are cached over the last 
four frames for each light. The filtered visibility buffers and the filtered variation 
measure buffers are stored for only the last frame for each light. Note that the 
sample counts and the variation measures are packed into the same buffer.

Then, we generate visibility buffers for all lights using ray tracing. We use the 
depth-buffer values to reconstruct the world-space positions of visible pixels using 
inverse projection. World-space pixel positions can also be read directly from a 
G-buffer (if available) or evaluated by casting primary rays for greater precision. 
From these positions, we shoot shadow rays toward light sources to evaluate their 
visibility using our adaptive sampling algorithm. Results are denoised and stored 
in visibility buffers, which are passed to the final lighting stage. Visualizations of 
variation measures, sample counts, and filtering kernel sizes used by our shadow 
calculation are shown in Figure 13-10 for a single frame.

Figure 13-9.  Buffer layout used by our algorithm.
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The lighting stage uses a single rasterization pass during which all scene lights are 
evaluated. A rasterized point is lit by all scene lights in a loop and the results are 
accumulated. Note that the visibility buffer of each light is queried before shading, 
which in turn is done only for visible lights—this provides implicit light culling to 
increase performance.

13.6	 �RESULTS

We evaluated our method for computing both hard and soft shadows and compared 
it with a reference shadow-mapping implementation. We used three test scenes of 
20-second animation sequences with a moving camera. The Pub and Resort scenes 
have similar geometric complexity, but the Pub scene contains much larger area 
lights. The Breakfast scene has a significantly larger triangle count. The Pub and 
Breakfast scenes represent interiors, and thus they use point lights, and the exterior 
Resort scene uses directional lights. For computing soft shadows, these lights are 
treated as disk lights. We used the shadow-mapping implementation of the Falcor 
framework, which uses cascaded shadow map (CSM) and exponential variance 
shadow map (EVSM) [13] filtering. We used four CSM cascades for directional lights 
and one cascade for point lights, with the largest level using a shadow map of size 
2048 × 2048. The screen resolution for all tests was 1920 × 1080.

Figure 13-10.  Top left: filtered variation measure � tvD . Top center: areas with sample counts evaluated 
to zero shown in black. Top right: sample counts mapped to yellow-to-pink spectrum. Bottom left: spatial 
filtering kernel size levels mapped to different colors. Bottom center: filtered visibility buffer. Bottom right: 
final result.
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We evaluated four shadow-computation methods: hard shadows computed using 
shadow mapping (SM hard), hard shadows computed using our method (RT hard), 
soft shadows computed using ray tracing with smax = 5 (RT soft SQ), and soft 
shadows computed using ray tracing with smax = 8 (RT soft HQ). The measurements 
are summarized in Table 13-1.

Table 13-1.  Overview of the measured results. The table shows the shadow-computation GPU times 
(in ms) for the tested methods when using one and four light sources. The measurements were 
performed on a GeForce RTX 2080 Ti GPU.

13.6.1	 �COMPARISON WITH SHADOW MAPPING

The measurements in Table 13-1 show that for the Breakfast and Resort scenes 
with four lights, ray traced hard shadows (RT hard) outperform shadow mapping 
(SM hard) by about 40% and 60%, respectively. For the Breakfast scene, we 
attribute this to its large number of triangles. Increasing the number of triangles 
seems to slow down the rasterization pipeline used by shadow mapping more 
quickly than the RT Cores. The exterior Resort scene requires all four CSM 
cascades to be generated and filtered, causing significantly longer execution times 
for shadow mapping.

For the Pub scene (Figure 13-11) and the Breakfast scene (Figure 13-12) with one 
light, shadow mapping is about twice as fast as hard ray traced shadows. This is 
because only one CSM cascade is used for point lights, but it comes at the cost 
of visual artifacts. For the Pub scene, perspective aliasing occurs close to the 
camera (in the screen borders) and on the wall in the back. Also, shadows cast by 
chairs are disconnected from the ground. Trying to remedy these artifacts leads to 
shadow acne in other parts of the image. Ray traced shadows, on the other hand, 
do not suffer from these artifacts.
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Figure 13-11.  Hard shadows comparison. Visibility buffers (left) and rendered image (right) for the Pub 
scene with four lights, showing hard shadows rendered using our method (top) and shadow mapping 
(bottom).

Figure 13-12.  Soft shadows comparison. Visibility buffers (left) and rendered image (right) for the 
Breakfast scene with four lights, showing soft shadows rendered using our method (top) and shadow 
mapping (bottom).
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For the Breakfast scene, EVSM filtering produces very soft and unfocused shadows 
under the table. This is likely due to the insufficient shadow-map resolution in this 
area, which is compensated for by stronger filtering. Using less aggressive filtering 
resulted in aliasing artifacts, which were more disturbing. For the Resort scene, 
the visual results of ray tracing and shadow mapping are quite similar; however, 
the ray traced shadows outperform shadow mapping in most tests.

13.6.2	 �SOFT SHADOWS VERSUS HARD SHADOWS

Comparing soft and hard ray traced shadows, in our tests it takes about 2–3 times 
longer to calculate soft shadows. This is, however, highly dependent on the size of 
the lights. For the Pub scene, which had lights set up to produce larger penumbras, 
calculation is up to 40% slower for four lights compared to the similarly complex 
Resort scene. This is because we are bound to use a high number of samples in 
larger areas. A visual comparison of the RT soft SQ and RT soft HQ methods is 
shown in Figure 13-13. Note that for the large Breakfast scene, the execution time 
did not increase linearly with the number of lights for the RT hard method. This 
indicates that the RT Cores were not yet fully occupied for the single light case.

Compared to the unoptimized calculation using 8 samples per pixel, our adaptive 
sampling method provides a combined speedup of about 40–50% for the tested 
scenes. Our method, however, achieves better visual quality thanks to the temporal 
accumulation.

13.6.3	 �LIMITATIONS

Our implementation of the proposed method currently has several limitations that 
might show as artifacts in fully dynamic scenes. In the current implementation, 
we do not consider motion vectors of moving objects, which reduces the success 
of reprojection for moving shadow receivers and can at the same time introduce 
false-positive reprojection successes for a particular combination of camera and 
shadow receiver movement (although this case should be quite rare).

Figure 13-13.  Difference between standard and high-quality adaptive sampling. Left: normal quality 
(up to 5 samples per pixel). Center: high quality (up to 8 samples per pixel). Right: final render using 
the high-quality setting.
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More significantly, moving shadow casters are not handled by the method, which 
might introduce temporal shadow artifacts. On the positive side, our method uses 
a limited-size temporal buffer (only the last four frames are considered), and in 
combination with the aggressive variability measure, it will usually enforce dense 
sampling of the dynamic penumbras. Another problematic case is moving light 
sources, which we do not address explicitly at the moment. The situation is similar 
to moving shadow casters: a quickly moving light source causes severe changes 
in shadows that reduce the potential of adaptive sampling and can cause ghosting 
artifacts.

The current algorithm for maintaining a per-frame ray budget is relatively simple, 
and it would be desirable to use a technique that would directly relate the variation 
measure to the number of samples while aiming to minimize the perceived error 
(including shading). In that case it would be easier to guarantee frame rates while 
obtaining shadows of highest possible quality.

13.7	 �CONCLUSION AND FUTURE WORK

In this chapter, we have presented a method for calculating ray traced shadows using 
the modern DXR API within a rasterization forward-rendering pipeline. We proposed 
an adaptive shadow-sampling method that is based on estimating the variation of 
the visibility function over surfaces seen by the camera. Our method produces hard 
shadows as well as soft shadows using lights of various sizes. We have evaluated 
various configurations of light-sampling and shadow-filtering techniques and 
provided recommendations for best results.

We compared our method to a state-of-the-art shadow-mapping implementation 
in terms of visual quality and performance. In general, we conclude that the higher 
visual quality, simpler implementation, and high performance of ray traced shadows 
makes them preferable over shadow mapping on DXR-capable hardware. This 
will also move the burden of calculating shadows from rasterization to ray tracing 
hardware units, making more performance available for rasterization tasks. Using  
AI-based denoisers running on dedicated GPU cores can help even more in this 
respect.

With shadow mapping, scene designers are often challenged with minimizing the 
technique’s artifacts by setting up technical parameters such as near/far planes, 
shadow-map resolutions, and bias and penumbra sizes not related to physical 
lighting. With ray traced shadows, there is still a burden on designers to make shadow 
calculation efficient and noise-free by using reasonable light sizes, ranges, and 
placement. We believe, however, that these parameters are more intuitive and closer 
to physically based lighting.
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13.7.1	 �FUTURE WORK

Our method does not explicitly handle movement of lights, which can lead to 
ghosting artifacts from rapid light movement. A correct approach would be to 
discard cached visibility from previous frames when it is no longer valid after light 
movement between the frames.

Shadow mapping is not view-dependent, and a common optimization is to calculate 
shadow maps only when either a light or the scene changes. This optimization is not 
applicable for ray tracing, as ray traced visibility buffers need to be recalculated 
after every camera movement. Because of this, shadow mapping can still be 
preferable for scenarios where the shadow map is rarely updated. Therefore, a 
combination of high-quality ray traced shadows for significant light sources and 
shadow mapping for mostly static parts of the scene and/or less contributing lights 
can be desirable.

As mentioned in Section 13.3, an improved approach to combining shadows 
evaluated using our method with the analytic direct illumination, such as the 
one introduced by Heitz et al. [11], can be used to improve the correctness of the 
rendered images.
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Open Access  This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. You do 
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative 
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you 
will need to obtain permission directly from the copyright holder.
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