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ABSTRACT

Texture filtering is an important implementation detail of every rendering
system. Its purpose is to achieve high-quality rendering of textured surfaces,
while avoiding artifacts, such as aliasing, Moiré patterns, and unnecessary
overblur. In this chapter, we extend the ray cone method for texture level of
detail so that it also can handle refraction. Our method is suitable for current
game engines and further bridges the gap between offline rendering and
real-time ray tracing.

10.1 INTRODUCTION

Accurate rendering of transparent and semitransparent surfaces is one of the
many appealing features of renderers based on ray tracing. By simply
following the paths of rays refracted on transmissive surfaces, it is possible to
render materials, such as glass and water, with great realism. Ray tracing
enables us to take refraction indices of materials on both sides of the surface
into account and “bend” the rays in a physically correct way, which is an effect
that is difficult to achieve using rasterization and which contributes
significantly to the realistic rendering of semitransparent materials. Here, we
focus on using the ray cone method [1, 2] for the filtering of textures on
surfaces seen by refracted rays to achieve the same level of visual quality as
for reflected and primary rays. An example is shown in Figure 10-1.

The geometry of perfect refraction (and reflection) has been covered in detail
in Chapters 8 and 9 and by de Greve [5], including the interesting case of total
internal reflection and the relation of Fresnel equations to the modeling of
transmissive surfaces. A practical implementation in a ray tracer is covered in
Chapter 11.
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Figure 10-1. Refractive materials, such glass and water, can be rendered accurately using ray
tracing with respect to given indices of refraction. This is a significant improvement compared to
rasterization. This picture was rendered using a fast path tracer, which correctly integrates over
all necessary domains in order to reproduce refraction effects as well as camera defocus blur.

A more complex case is the modeling of refractions on rough surfaces, e.g.,
frosted glass and ice, where rays are not refracted perfectly, but their
direction is randomized. A model for such materials is described by a
bidirectional transmittance distribution function (BTDF). A formal formulation
of such a BTDF employing a widely used Cook–Torrance microfacet model
was provided in the seminal paper by Stam [9], and importance sampling was
added by Walter et al. [10]. A more efficient importance sampling method was
later developed by Heitz [7].

Though the problem of ray cone refraction might at first seem to be the same
as reflection, the fundamental difference lies in the fact that indices of
refraction are typically different for bodies at opposing sides of the hit point
surface, whereas they are always the same for reflecting ray cones. This
introduces the relative index of refraction η, which has significant impact on
the refracted ray direction. It is not only the width of the cone that changes,
but also its geometry. Depending on the relative index of refraction (whether a
ray refracts from an optically denser to a thinner environment or vice versa),
the cones can either shrink or grow. Also, the centerline of the refracted cone
can differ significantly from the direction of the refracted ray. Note that
altering the refracted ray direction to reflect this change is not viable, in our
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Figure 10-2. A glass cube showing refraction in the center and TIR closer to the sides.

opinion, as it could miss geometry that would be hit under certain angles,
essentially sampling a correct footprint from incorrect geometry. Such a
solution would be more expensive as well.

When the ray cone refracts from an optically denser to a thinner environment,
total internal reflection (TIR) can occur. A good real life example is Snell’s
window visible when an observer underwater looks up to the surface. Another
example is shown on the glass cube in Figure 10-2. For incident rays making
an angle with a normal that is larger than a certain critical angle, a perfect
reflection occurs and we can use the ray cone solution for reflected rays. In
those cases, no refraction occurs. A problem occurs on the boundary between
a fully refracted and a totally internally reflected (TIRed) ray, when the ray is
incident under an angle close to the critical angle. In this case, one part of the
ray cone is reflected and other part is TIRed (see Figure 10-3).

The method presented in this chapter calculates an approximate refracted ray
cone that attempts to match the footprint of a “perfectly refracted” cone as
closely as possible without altering the refracted ray direction. As in other
methods [3, 6, 8], we also only follow the part of the cone where the central
ray ends up; i.e., if it is refracted, we construct a refracted ray cone, and if the
central ray is TIRed, we construct a reflected ray cone.

10.2 OUR METHOD

A ray cone is defined by a width w, a spread angle α, a ray origin O, and a
direction d [2], as illustrated in Figure 10-4, left. The curvature approximation
at the hit point is modeled as a signed angle β, where a positive sign indicates
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Figure 10-3. A ray cone (in gray) is transported via a surface interface from a thicker medium to a
thinner one. The central ray of the ray cone is refracted into the red arrow. Note, however, that if
the ray cone is seen as a set of internal rays, four of these will be totally internally reflected, which
forms the yellow part. The rest are refracted into the red volume.
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Figure 10-4. Left: a gray ray cone, defined by an origin O, a direction d, a width w, and a half cone
angle α. The spread of the normal n is modeled by the angle β. Right: we create our refraction ray
cone approximation from the red volume. Dashed lines indicate the curvature of the surface at the
hit point.

a convex surface and a negative sign indicates a concave surface. Our
assumption is that a reasonable approximation will be obtained by handling
the computations in two dimensions, by tracking the lower and upper parts of
the ray cone, and by refracting those with the perturbed normals as shown in
Figure 10-4, right.
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Figure 10-5. The geometric setup used in the derivation of the refracted ray cone.

In the following, all references are made to Figure 10-5. We use the hit point P
as the origin of the two-dimensional coordinate frame, and we use n as the
y-axis andm as the x-axis. The vectorm needs to be orthogonal to n and also
parallel to d, and this can be done with a projection and normalization as

m =
d – (n · d)n
‖d – (n · d)n‖

. (10.1)

We assume that all vectors and points are in this two-dimensional frame.
We create the upper direction vector du by rotating d by +α, and the lower
direction vector dl by rotating d by –α. The upper ray, with direction du, starts
from the origin O offset by w/2 in the direction orthogonal to d, and similar for
the lower ray. These are then intersected with the x-axis, which gives us Pu

and Pl. This is illustrated in Figure 10-5.

We use an augmented refraction function that returns a vector located in the
plane being spanned by the incident ray direction and the normal, and also
orthogonal to the normal, if the ray is TIRed. Otherwise, standard refraction is
used. For example, if d would have been TIRed in Figure 10-5, then our
refraction function would returnm. From the spread of the normal and the
normal itself, n, we also create nu and nl, which are shown in Figure 10-5.
The refracted direction t is computed by calling the refraction function with n
and d and the ratio of indices of refraction. This is done analogously to create
tu and tl using nu and nl.
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Figure 10-6. A refracted cone calculated using our method (light green) and the ground truth
approximated using many rays (red).

Given the computations above, the refracted ray cone is constructed as
follows. The refracted ray cone origin is P and its direction is t. The width w of
the refracted ray cone is computed as

w = wu + wl, (10.2)

where wu and wl are the widths shown in Figure 10-5. The width wu is
computed as the length along a direction that is orthogonal to t from the
origin to the line defined by tu and the hit point Pu, and analogously for wl. The
half cone angle α of the refracted ray cone is computed as half the angle
between tu and tl together with a sign as

α =
1
2
arccos

(
tu · tl

)
sign

(
tux t

l
y – t

u
y t
l
x

)
. (10.3)

In order to further improve the quality of our method, we suggest using
higher-quality anisotropic filtering [1] for hits after refraction has occurred.
The ray cone geometry changes significantly after refracting, as described in
Section 10.1 and illustrated in Figure 10-6. To compensate for the imperfect
approximation of the refracted cone, we can use the anisotropic filter to at
least better match the elliptical footprint at the hit point.

One situation that is not explicitly handled in our method is when the incident
ray is below the perturbed normal of the surface. In this case, a reflection
should occur instead of refraction. However, during our experiments, we did
not detect this situation happening, and without handling it explicitly, our
implementation causes the cone to grow instead of reflecting. To handle this
situation, we propose to clamp incident vectors to be at most 90◦ away from
the normal.
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Our method cannot only be used for perfect refraction, but also for rough
refractions when, e.g., a microfacet-based BTDF is used to generate a
randomized refracted direction based on surface roughness. In this case, the
half-vector used for refracting the incident direction should be used as the
normal for our method because it is, in fact, the normal of the microfacet that
is used to refract the ray. Methods for stochastic evaluation of microfacet
BTDF typically generate these half-vectors, which can be used directly.
Alternatively, we can calculate such a half-vector using

n = –
ηt + d
‖ηt + d‖

. (10.4)

10.3 RESULTS

To evaluate our method, we compare the results to the ground-truth
reference that stochastically samples the correct footprint and to the method
based on ray differentials [8]. In Figure 10-7, we show results from a Whitted
ray tracer with several different texture filtering methods, namely, accessing
only mipmap level 0 (no filtering), using ray cones with isotropic filtering [2],
using ray cones with anisotropic filtering [1], and using ray differentials with
both isotropic and anisotropic filtering [8].

Our test scene contains a reflective sphere, a solid glass cube, and a glass
sphere, where the latter two cover refraction under many angles in one view
and also the case of total internal reflection. However, none of the methods
explicitly handle the boundary between refraction and TIR (which is usually
one or two pixels wide), and only the ground-truth method can render it
correctly—the other methods produce a boundary that is too sharp. Visual
results of our ray cone method are mostly comparable to the ray differentials
(see Figure 10-7). Our method, however, requires less per-ray storage and
overhead. Note that, as mentioned previously, we prefer to use anisotropic
filtering for refraction, which also gives results closer to the ground truth.

Performance of our method is nontrivial to evaluate, as opposed to when only
reflection occurs, as our new method is only used for rays hitting
transmissive materials. We used a test scene containing glass objects and
changed the view so that most of the scene is seen through the lens. Results
are summarized in Figure 10-8. Performance of all methods is near identical,
but slower than simply accessing mip level 0, which is expected. (The
rendering times for the viewpoint shown in Figure 10-1 with path tracing at
4 spp are 76.8 ms for mip level 0, 75.4 ms for ray cones with isotropic filtering,
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Mip Level 0 Ray Cones Isotropic Ray Cones Anisotropic

Ray Diffs. Isotropic Ray Diffs. Anisotropic Ground Truth

Figure 10-7. Results for our refracted ray cone method, which used the Unified method [1] for
computing surface spread. The ground truth was generated by stochastically sampling the
direction inside the screen-space ray cone through a pixel with 10,000 samples per pixel. Note
that anisotropic ray cones generate results that are close to anisotropic ray differentials in the left
zoom-in, whereas in the right zoom-in, the ray cones are more blurry. This is because ray cones
can only model circular cones and this situation requires more flexibility than that. Ray
differentials have a more expensive representation, which allows for better results.

82.7 ms for ray differentials with isotropic filtering, and 84.9 ms for ray
differentials with anisotropic filtering.) The isotropic versions are faster than
the anisotropic ones, but the method when we only use anisotropic filtering
after a refraction event has occurred can be expected to be faster than
anisotropic filtering for all hits in demanding scenes.

We also validated our approach inside a path tracer that stochastically
generates path samples that integrate over both the camera pixel footprint
(antialiasing) and a thin lens aperture (providing a defocus blur effect). We
adapted the ray cone creation procedure in order to better match the double
cone footprint of the light beams generated by such a setup. We take
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Figure 10-8. The Marbles scene rendered at 1920× 1080 resolution with our path tracer. Left:
for reference, the picture rendered using full-resolution textures (mip level 0). Right: our result
using ray cones with isotropic filtering produces visually identical results. The viewpoint in the top
row was rendered using 1000 spp (samples per pixel) for both approaches, and the bottom row
uses 400 spp.

advantage of the standard functionality of the ray cones and create them such
that they start from the camera at aperture width, converge to zero at the
focal distance, and then grow again. This allows our method to access mip
levels with lower resolution even more in the blurry regions of the defocus
blur. In such a path tracing setup, ray cones allow for saving bandwidth during
texture sampling operations, resulting in ca. 1.5% full-frame performance
improvement in the scene presented in Figure 10-1 and Figure 10-8. On this
scene, our approach also renders ca. 10% faster than ray differentials with
isotropic filtering and ca. 12% faster than ray differentials with anisotropic
filtering. As it provides the path tracing integrator with prefiltered bandlimited
texture samples, our approach also improves image convergence, as can be
seen in the low-sample count results presented in Figure 10-9. Those
pictures were rendered at interactive frame rates (62 ms per frame) after
three accumulated frames of a static camera, using 1 spp per frame
(resulting in 3 spp effective) and denoised using the NVIDIA OptiX denoiser.

Our tests were performed using an NVIDIA RTX 3090 GPU (Ampere).
Compared to always accessing the finest mip level (0), ray cones with
mipmapping can achieve speedups in general. This is due to accessing mip
levels with lower resolution more often. However, speedups can be expected
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Figure 10-9. Interactive path tracing after three accumulated frames with low sample count
(1 spp/frame resulting in 3 spp effective) using screen-space denoising and rendered at
1920× 1080. Our approach (bottom insets) provides smoother outputs in the blurry regions
compared to sampling textures at maximum resolution (mip level 0, top insets), which can help
with providing faster convergence speeds.

only for the most demanding scenes with a very large number of
high-resolution textures. We also used uncompressed textures for those
experiments, and enabling texture compression can reduce those speedups.

10.4 CONCLUSION

With the growing use of high-resolution textures and ray tracing in games, it
is important to support a precise solution for their filtering in order to
preserve the fine detail meticulously created by artists. In this chapter, we
have continued development of texture filtering with ray cones and added
support for refraction. Building on top of previous work, ray cones can now
support a range of use cases including reflection, refraction, isotropic or
anisotropic filtering, shading level of detail, integration with or without
G-buffer, and more. Ray cones are a lightweight and relatively
easy-to-integrate method, and we provide a publicly available implementation
as part of the Falcor framework [4] (see the RayFootprint class).
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